
 APPLICATION NOTE

R01AN0512EJ0210 Page 1of 157
Apr 1, 2013

Renesas USB MCU and USB ASSP
USB Basic Host and Peripheral firmware

Introduction
This document is an application note for Renesas USB MCU and USB ASSP. USB basic firmware, a sample program for
USB interface control using Renesas USB MCU and USB ASSP.

Target Device
RX62N group, RX621 group, RX630 group, RX631 group, RX63N group, RX63T group, R8A66597, R8A66593

This application note also applies to other microcontrollers in the RX 600 Series that have the same USB module as the
target device microcontrollers. When using this code in an end product or other application, its operation must be tested
and evaluated thoroughly.

This program has been evaluated using Renesas Starter Kit.

Contents

1. Document Overview 4

1.1 Overview 4
1.2 Related Documents 4
1.3 List of Terms 5
1.4 How to Read This Document 5

2. Overview 6

2.1 Development Goals 6
2.2 Features of USB‐BASIC‐FW 6
2.3 Function 7
2.4 Structure of Files and folders 7
2.5 Software Configuration 12
2.6 Non‐OS Scheduler Function and Tasks 13
2.7 Host and Peripheral Sample Vendor Demo 14
2.8 Note 14

3. How to Register Class Driver 15

3.1 How to register Peripheral Class Driver 15
3.2 How to register Host Class Driver 16

4. Peripheral 17

4.1 Peripheral Control Driver (PCD) 17
4.2 API (Application Programming Interface) 18
4.3 Structure Definitions 51

R01AN0512EJ0210
Rev.2.10

Apr 1, 2013

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 2 of 157
Apr 1, 2013

4.4 Peripheral Control Transfer 52
4.5 Data Transfer 54
4.6 Pipe Definition 57
4.7 Descriptor 59
4.8 Peripheral sample program 60
4.9 How to run USB‐BASIC‐FW in peripheral mode 63

5. Host 69

5.1 Host Control Driver (HCD) 69
5.2 Host Manager (MGR) 69
5.3 API (Application Programming Interface) 71
5.4 Host call‐back functions 109
5.5 Structure Definitions 112
5.6 Target Peripheral List 114
5.7 Host Control Transfer 114
5.8 Data Transfer and Control Data Transfer 116
5.9 Pipe Information 120
5.10 Host Sample Program 123
5.11 How to work USB‐BASIC‐FW as Host mode 125

6. HUB Class 131

6.1 Basic Functions 131
6.2 HUBCD API Functions 131
6.3 Down Port State Management 134
6.4 Connecting Devices to Down Ports 134
6.5 Class Requests 134

7. non‐OS Scheduler 135

7.1 Overview 135
7.2 non‐OS Scheduler Macro 135

8. uITRON system 146

8.1 Overvies 146
8.2 GUI configurator 146
8.3 uITRON system resource 146
8.4 uITRON Task start 147
8.5 uITRON Systemcall 147

9. How to register in non‐OS/RTOS 148

9.1 How to register in non‐OS 148

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 3 of 157
Apr 1, 2013

9.2 How to register in RTOS 149

10. Debug Information Output 150

10.1 When the debug information is output on the console window (HEW) 150
10.2 When the debug information is outputted to UART 150
10.3 Debug Information macros 150

11. DTC/EXDMA Transfer 151

11.1 Overview 151
11.2 How to DTC/EXDMA transfer in the sample program 154

12. Limitations 156

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 4 of 157
Apr 1, 2013

1. Document Overview

1.1 Overview
This document is an instruction manual for USB Basic Host and Peripheral firmware, a sample program for USB control
using Renesas USB MCU and USB ASSP

This firmware includes a uITRON version and an OS-less version.

This document is intended to be used together with the device’s data sheet of “1.2 Related Documents”.

1.2 Related Documents
1. Universal Serial Bus Revision 2.0 specification

【http://www.usb.org/developers/docs/】
2. RX62N Group, RX621 Group User’s Manual: Hardware (Document numberR01UH0033EJ)
3. RX630 Group User's Manual: Hardware (Document number R01UH0040EJ)
4. RX63N Group, RX631 Group User’s Manual: Hardware (Document number R01UH0041EJ)
5. RX63T Group User’s Manual: Hardware(Document number R01UH0331EJ)
6. R8A66597 Datasheet (Document number REJ03F0229)
7. R8A66593 Datasheet (Document number R19DS0071EJ0100)
8. RX600 Series USB Basic Firmware Installation Guide (Document numberR01AN0495EJ)
9. RI600/4 User’s Manual (Real-time OS for RX Family) (Document number REJ10J2052)

• Renesas Electronics Website
【http://renesas.com/】

• USB Devices Page
【http://renesas.com/en/usb/】

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 5 of 157
Apr 1, 2013

1.3 List of Terms
Terms and abbreviations used in this document are listed below.

ANSI : ANSI-C File I/O System Calls
APL : Application program
ASSP(assp) : Application Specifec Standard Produce
cstd : Prefix of ｆunction and ｆile for Peripheral & Host Common Basic (USB low level) F/W
HCD : Host control driver of USB-BASIC-FW
HDCD : Host device class driver (device driver and USB class driver)
HEW : High-performance Embedded Workshop
hstd : Prefix of function and file for Host Basic (USB low level) F/W
HUBCD : Hub class sample driver
H/W : Renesas USB device
MGR : Peripheral device state maneger of HCD
non-OS : USB basic firmware for OS less system
PCD : Peripheral control driver of USB-BASIC-FW
PDCD : Peripheral device class driver (device driver and USB class driver)
PP : Pre-processed definition
pstd : Prefix of ｆunction and ｆile for Peripheral Basic (USB low level) F/W
RTOS : USB basic firmware for uITRON system
RX62N-RSK : Renesas Starter Kit + for RX62N
RX63N-RSK : Renesas Starter Kit + for RX63N
RX63T-RSK : Renesas Starter Kit + for RX63T
RX630-RSK : Renesas Starter Kit for RX630
R8A66597 : Renesas Hi-Speed USB2.0 ASSP R8A66597 board

(Use in combination with RX62N-RSK.)
R8A66593 : Renesas Hi-Speed USB2.0 ASSP Peripheral only.
Scheduler : Used to schedule functions, like a simplified OS.
Scheduler Macro : Used to call a scheduler function (non-OS)
STD : USB Basic Host and Peripheral firmware
SW1/SW2/SW3 : User switches on theRSK Borad (Note1)
Task : Processing unit
uITRON, ITRON : Industrial The Real-time Operating system Nucleus
USB : Universal Serial Bus
USB-BASIC-FW : USB basic firmware for USB Basic Host and Peripheral firmwareRenesas (non-OS/RTOS)

(Note 1) When RX62N-RSK is used in conjunction with R8A66597, SW1 is allocated to the port used by an interrupt.
Therefore, please do not use SW1

1.4 How to Read This Document
To run the demo, start with the installation guide; document nr. R01AN0495EJ. See 1.2.

This document is not intended for reading straight through. Use it first to gain acquaintance with the package, then to
look up information on functionality and interfaces as needed for your particular solution.

To get acquainted with the source code, read Chapter 2.4 and note which MCU-specific files you need select at directory
"HwResourceForUSB". Observe which files belong to the application level.

Chapter 3 of this document are only for the peripheral mode. Chapter 5 of this document are only for the host mode.
Chapter 4.8 explains how the default peripheral vendor application works. Chapter 5.10 explains how the default host
vendor application works. You will change this to create your own solution.

Understand how all code modules are divided into tasks, and that these tasks pass messages to one another. This is so that
functions (tasks) can execute in the order determined by a scheduler and not strictly in a predetermined order. This way
more important tasks can have priority. Further, tasks are intended to be non-blocking by using a documented callback
mechanism. The task mechanism for non-OS version is described in Chapter 2.6. How to regist the task is described in
Chapter 9.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 6 of 157
Apr 1, 2013

2. Overview

2.1 Development Goals
USB-BASIC-FW was developed with the following goals in mind.

• To simplify the development of USB communication programs by customers using Renesas.
• To provide source code examples for hardware control of USB.

2.2 Features of USB-BASIC-FW
The main features of USB-BASIC-FW are as follows.

2.2.1 Overall
• Can control RX62N, RX63N, RX630, RX63T ,R8A66597 and R8A66593 by common source code.
• Can operate in either host or peripheral mode.
• Multiple device class drivers may be installed without the need to customize USB-BASIC-FW.

2.2.2 Host mode
• When a no-response condition is detected during data transfer to a USB Function, the user can specify the number of

retries per transfer.
• A single pipe can perform multiple exclusive data communication tasks.
• A common API for control transfer, bulk transfer and interrupt transfer is provided.
• The function R_usb_hstd_ChangeDeviceState for devices connect/disconnect processing is provided.
• The function R_usb_hstd_ChangeDeviceState for suspend/resume processing is provided.
• HUBCD sample program code is provided.
• Sample application for data transfer is added. (This application operates as Vendor class.)
• A single pipe can perform multiple exclusive data communication tasks in order to manage HDCD pipe information

tables.

2.2.3 Peripheral mode
• Operation can be confirmed by using USBCommandVerifier.exe.

(USBCV is available for download from http://www.usb.org/developers/developers/tools/.)
• API for control transfer is provided.
• Common API for bulk transfer and interrupt transfer is provided.
• An API function is provided for devices connect/disconnect processing is provided.
• An API function is provided for suspend/resume processing is provided.
• Sample application for data transfer is added. (This application operates as Vendor class.)

2.2.4 Function provided by user
The following functions must be provided by the customer to match the system under development.

• Overcurrent detection processing when connecting USB cables (Host mode).
• Descriptor analysis (Host mode).
• Descriptor and pipe data (Peripheral mode)
• Device class driver.Examples currently exist for HMSC, PMSC, HHID, PHID, HCDC, PCDC.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 7 of 157
Apr 1, 2013

2.3 Function
USB-BASIC-FW source code includes files for Host, Peripheral (Function) and common code.

[Common code]

・ Device connect/disconnect, suspend/resume, and USB bus reset processing
・ Control transfer on pipe 0
・ Data transfer on pipes 1 to 9 (bulk or interrupt transfer: CPU access/DTC or DMA access)

 [Host]

・ In host mode, enumeration as low-speed/full-speed/high-speed device (However, operating speed is different by
devices ability.)

・ Transfer error determination and transfer retry

[Peripheral]

・ In peripheral mode, enumeration as USB Host of USB1.1/2.0/3.0.

2.4 Structure of Files and folders
2.4.1 Folder Structure
The folder structure in which the files are provided in USB-BASIC-FW (non-OS & RTOS) is shown below. The USB-
BASIC-F/W includes a sample (vendor) class driver, application and hardware resource sample code.

The source codes dependent on each device and evaluation board are stored in each hardware resource folder
(HwResourceForUSB_devicename).

 Workspace
(USB-BASIC-FW) [Common USB code that is used by all USB firmware]
 ＋―――USBSTDFW
 ｜ ＋―――non-OS/RTOS
 ｜ ｜ ＋―――class
 ｜ ｜ ｜ ＋―――hubd Sample hub driver
 ｜ ｜ ｜ ＋―――SMPL USB standard request sample
 ｜ ｜ ＋―――USB20
 ｜ ｜ ＋―――HCD Host control driver
 ｜ ｜ ＋―――PCD Peripheral control driver
 ｜ ｜ ＋―――LIB Common library
 ｜ ＋include Common header file
(ANSI-C File I/O System Calls)
 ＋―――ANSI [open(), close(), read(), write(), etc of the USB class driver]
(HW Setting) [Hardware access layer; to manipulate the MCU’s USB register]
 ＋―――HwResourceForUSB_RX62N Hardware resource for RX62N/RX621 Group
 ＋―――HwResourceForUSB_RX62N_597assp Hardware resource for RX62N + R8A66597
 ＋―――HwResourceForUSB_RX63N Hardware resource for RX63N/RX631 Group

＋―――HwResourceForUSB_RX63T Hardware resource for RX63T Group
 ＋―――HwResourceForUSB_RX630 Hardware resource for RX630 Group
(Sample Code) [Class driver and user application]
 ＋―――SmplMain Sample application
 ＋―――VENDOR Vendor Class Driver
(uITRON) [uItron OS code]
 ＋―――RI600_4 RTOS only

* 1. Copy the content of folder "HwResourceForUSB_devicename" and paste into "HwResourceForUSB" before code
compilation.

* 2. Please select the folder “HwResourceForUSB_RX62N_597assp” when using R8A66593.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 8 of 157
Apr 1, 2013

2.4.2 List of files
The files provided in USB-BASIC-FW are listed below.

The Project columns indicate whether a file is included in a build configuration:

P = The file is included in the PERI build configuration.
H = The file is included in the HOST build configuration.
PH = The file is included in the PERI_HOST build configuration.

The source file that is highlighted to aqua color may be referred to, and modified by the user.

Table 2-1 List of source file (non-OS)

Project Folder File Name Description
P H PH

HCD r_usb_hcontrolrw.c Control read/write processing O O
HCD r_usb_hdriver.c HCD task O O
HCD r_usb_hdriverapi.c HCD/MGR API functions O O
HCD r_usb_hintfifo.c INTR, INTN, BEMP interrupt processing O O
HCD r_usb_hmanager.c MGR task O O
HCD r_usb_hstdfunction USB function extension library functions O O
PCD r_usb_pcontrolrw.c Control read/write processing O O
PCD r_usb_pdriver.c PCD task O O
PCD r_usb_pdriverapi.c PCD API functions O O
PCD r_usb_pintfifo.c INTR, INTN, BEMP interrupt processing O O
PCD r_usb_pstdrequest.c USB standard request responses O O
LIB r_usb_cdataio.c Data read/write, FIFO access processing O O O
LIB r_usb_cintfifo.c INTR, INTN, BEMP interrupt processing O O O
LIB r_usb_cinthandler_usbip0.c USB interrupt handler for USB IP0 O O O
LIB r_usb_cinthandler_usbip1.c USB interrupt handler for USB IP1 O O O
LIB r_usb_cscheduler.c Scheduler control for non-OS O O O
LIB r_usb_cstdapi.c Host/Peripheral common API function O O O
hubd r_usb_hhubsys_uitron.c HUBCD functions (uITRON) O O
SMPL r_usb_pclassvendor.c Peripheral class requests O O
SMPL r_usb_smp_cSub.c Common library functions O O O
SMPL r_usb_smp_hSub.c Host standard requests O O
ANSI r_usb_ansi.c Host/Peripheral common ANSI function O O O
ANSI r_usb_ansi_host.c ANSI function for Host O O
ANSI r_usb_ansi_peri.c ANSI function for Peripheral O O
ANSI r_usb_otherclass.c open function for each class O O O
SmplMain main.c main process O O O
SmplMain r_usb_vendor_capl.c Sample program for Host and Peripheral O O O
SmplMain r_usb_vendor_descriptor.c Descriptor and Endpoint information O O
SmplMain r_usb_vendor_hapl.c Host sample program O O
SmplMain r_usb_vendor_papl.c Peripheral sample program O O
VENDOR r_usb_vendor_hansi.c Host Driver for ANSI O O
VENDOR r_usb_vendor_hapi.c Sample HDCD API O O
VENDOR r_usb_vendor_hdefep.c Endpoint Table O O
VENDOR r_usb_vendor_hdriver.c Sample HDCD O O
VENDOR r_usb_vendor_pansi.c Peripheral Driver for ANSI O O
VENDOR r_usb_vendor_papi.c Sample PDCD API O O
VENDOR r_usb_vendor_pdriver.c Sample PDCD O O
*P：PERI、H：HOST、PH：PERI_HOST

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 9 of 157
Apr 1, 2013

HwResource
ForUSB

dbsct.c Section Initialize O O O

HwResource
ForUSB

resetprg.c Reset program O O O

HwResource
ForUSB

rx_mcu.c MCU setting O O O

HwResource
ForUSB

keydriver.c
lcddriver.c
adcdriver.c
leddriver.c
scidriver.c

Key driver for RSK board
LCD driver for RSK board
ADC driver for RSK board
LED driver for RSK board
SCI driver for RSK board

O O O

HwResource
ForUSB

r_usb_creg_abs.c USB setting common function for Host &
Peripheral. O O O

HwResource
ForUSB

r_usb_creg_access.c USB register access function for Host &
Peripheral O O O

HwResource
ForUSB

r_usb_creg_dmadtc.c DMA/DTC transfer setting function O O O

HwResource
ForUSB

r_usb_hostelectrical.c Electrical Test function

HwResource
ForUSB

r_usb_hreg_abs.c USB setting common function for Host O O

HwResource
ForUSB

r_usb_hreg_access.c USB register access function for Host O O O

HwResource
ForUSB

r_usb_preg_abs.c USB setting common function for
Peripheral. O O

HwResource
ForUSB

r_usb_preg_access.c USB register access function for
Peripheral O O

HwResource
ForUSB

‐ Output file of HEW O O O

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 10 of 157
Apr 1, 2013

Table 2-2 List of Source file (RTOS)

Project Folder File Name Description
P H PH

HCD r_usb_hcontrolrw.c Control read/write processing O O
HCD r_usb_hdriver.c HCD task O O
HCD r_usb_hdriverapi.c HCD/MGR API functions O O
HCD r_usb_hintfifo.c INTR, INTN, BEMP interrupt processing O O
HCD r_usb_hmanager.c MGR task O O
HCD r_usb_hstdfunction USB function extension library functions O O
PCD r_usb_pcontrolrw.c Control read/write processing O O
PCD r_usb_pdriver.c PCD task O O
PCD r_usb_pdriverapi.c PCD API functions O O
PCD r_usb_pintfifo.c INTR, INTN, BEMP interrupt processing O O
PCD r_usb_pstdrequest.c USB standard request responses O O
LIB r_usb_cdataio.c Data read/write, FIFO access processing O O O
LIB r_usb_cintfifo.c INTR, INTN, BEMP interrupt processing O O O
LIB r_usb_cinthandler_usbip0.c USB interrupt handler for USB IP0 O O O
LIB r_usb_cinthandler_usbip1.c USB interrupt handler for USB IP1 O O O
LIB r_usb_cscheduler.c Scheduler control for non-OS O O O
LIB r_usb_cstdapi.c Host/Peripheral common API function O O O
hubd r_usb_hhubsys_uitron.c HUBCD functions (uITRON) O O
SMPL r_usb_pclassvendor.c Peripheral class requests O O
SMPL r_usb_smp_cSub.c Common library functions O O O
SMPL r_usb_smp_hSub.c Host standard requests O O
ANSI r_usb_ansi.c Host/Peripheral common ANSI function O O O
ANSI r_usb_ansi_host.c ANSI function for Host O O
ANSI r_usb_ansi_peri.c ANSI function for Peripheral O O
ANSI r_usb_otherclass.c open function for each class O O O
SmplMain main.c main process O O O
SmplMain r_usb_vendor_capl.c Sample program for Host and Peripheral O O O
SmplMain r_usb_vendor_descriptor.c Descriptor and Endpoint information O O
SmplMain r_usb_vendor_hapl.c Host sample program O O
SmplMain r_usb_vendor_papl.c Peripheral sample program O O
VENDOR r_usb_vendor_hansi.c Host Driver for ANSI O O
VENDOR r_usb_vendor_hapi.c Sample HDCD API O O
VENDOR r_usb_vendor_hdefep.c Endpoint Table O O
VENDOR r_usb_vendor_hdriver.c Sample HDCD O O
VENDOR r_usb_vendor_pansi.c Peripheral Driver for ANSI O O
VENDOR r_usb_vendor_papi.c Sample PDCD API O O
VENDOR r_usb_vendor_pdriver.c Sample PDCD O O

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 11 of 157
Apr 1, 2013

HwResource
ForUSB

r_usb_host.cfg Configuration file for RTOS resource O

HwResource
ForUSB

r_usb_perihost.cfg Configuration file for RTOS resource O

HwResource
ForUSB

r_usb_peri.cfg Configuration file for RTOS resource O ×

HwResource
ForUSB

dbsct.c Section Initialize O O O

HwResource
ForUSB

resetprg.c Reset program O O O

HwResource
ForUSB

rx_mcu.c RSK processing O O O

HwResource
ForUSB

keydriver.c
lcddriver.c
adcdriver.c
leddriver.c
scidriver.c

Key driver for RSK board
LCD driver for RSK board
ADC driver for RSK board
LED driver for RSK board
SCI driver for RSK board

O O O

HwResource
ForUSB

r_usb_creg_abs.c USB setting common function for Host &
Peripheral. O O O

HwResource
ForUSB

r_usb_creg_access.c USB register access function for Host &
Peripheral O O O

HwResource
ForUSB

r_usb_creg_dmadtc.c DMA/DTC transfer setting function O O O

HwResource
ForUSB

r_usb_hostelectrical.c Electrical Test function

HwResource
ForUSB

r_usb_hreg_abs.c USB setting common function for Host O O

HwResource
ForUSB

r_usb_hreg_access.c USB register access function for Host O O O

HwResource
ForUSB

r_usb_preg_abs.c USB setting common function for
Peripheral. O O

HwResource
ForUSB

r_usb_preg_access.c USB register access function for
Peripheral O O

HwResource
ForUSB

―

Output file of HEW O O O

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 12 of 157
Apr 1, 2013

2.5 Software Configuration
In peripheral mode, USB-BASIC-FW comprises the peripheral driver (PCD), and the application (APL). PDCD is the
class driver and not part of the USB-BASIC-F/W. See Table 2-3. In host mode, USB-BASIC-FW comprises the host
driver (HCD), the manager (MGR), the hub class driver (HUBCD) and the application (APL). HDD and HDCD are not
part of the USB-BASIC-F/W, see Table 2-3

The peripheral driver (PCD) and host driver (HCD) initiate hardware control through the hardware access layer
according to messages from the various tasks or interrupt handler. They also notify the appropriate task when hardware
control ends, of processing results, and of hardware requests.

Manager manages the connection state of USB peripherals and performs enumeration. In addition, manager issues a
message to host driver or hub class driver when the application changes the device state. Hub class driver is sample
program code for managing the states of devices connected to the down ports of the USB hub and performing
enumeration.

The customer will need to make a variety of customizations, for example designating classes, issuing vendor-specific
requests, making settings with regard to the communication speed or program capacity, or making individual settings that
affect the user interface.

In addition, PDCD and HDCD need to be created by user. Please refer to the following sample program about how to
create PDCD and HDCD.

PDCD : Workspace\VENDOR\r_usb_vendor_pdriver.c
HDCD : Workspace\VENDOR\r_usb_vendor_hdriver.c

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 13 of 157
Apr 1, 2013

6 Device class driver (PDCD)

2 Peripheral Driver Task (PCD)

8 Application (APL)

USB - BASIC - F/W

4 Manager Task
(MGR)

5 HUB Task
(HUBCD)

3 Host Driver Task (HCD)

1 USB Interrupt Handler

Hardware

Sc
he

du
le

r
Fu

nc
tio

n
（

no
n-

O
S）

6 Device class driver (HDCD)

7 Device driver (HDD)

8 Application (APL)

uI
TR

O
N

Peripheral Mode Host Mode

User Programming Layer

Figure 2-1 Task Configuration of USB-BASIC-FW

Table 2-3 Software function overview

No. Module Name Function
1 H/W Access Layer Hardware control

2 USB interrupt handler USB interrupt handler
(USB packet transmit/receive end and special signal detection)

3 Peripheral control driver
(PCD)

Hardware control in peripheral mode
Peripheral transaction management

4 Host control driver
(HCD)

Hardware control in host mode
Host transaction management

5 Host manager
(MGR)

Device state management
Enumeration
HCD/HUBCD control message determination

6 Hub class driver
(HUBCD)

HUB down port device state management
HUB down port enumeration

7 Device class driver (PDCD/HDCD) Provided by the customer as appropriate for the system.
8 Device driver (HDD) Provided by the customer as appropriate for the system.
9 Application(APL) Provided by the customer as appropriate for the system.

2.6 Non-OS Scheduler Function and Tasks
When using the non-OS version of the source code, which is set by a macro in r_usb_usrconfig.h, a scheduler function
manages requests generated by tasks and hardware according to their relative priority. When multiple task requests are
generated with the same priority, they are executed using a FIFO configuration. To assure commonality with non-OS and
uITRON-compatible firmware, requests between tasks are implemented by transmitting and receiving messages. In
addition, call-back functions are used for responses to tasks indicating the end of a request, so the customer need only
install appropriate class drivers for the system and there is no need to modify the scheduler itself. Please refer to “4.2.4
PCD Call-back functions” or “5.4 Host call-back functions”.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 14 of 157
Apr 1, 2013

2.7 Host and Peripheral Sample Vendor Demo
USB-BASIC-FW includes a sample “vendor class application” task for both host and peripheral. These interact with
eachother when connected - even if on the same MCU. Data is transferred in both directions using endpoints EP1 to
EP4:

1. The peripheral will send a byte which is incremented from 0x00 to 0xFF using EP1 IN and EP3 IN.

2. This endpoint (EP1 IN and EP3 IN) is continuously read by the host demo application.

3. The host will send a byte which is incremented from 0x00 to 0xFF using EP2 OUT and EP4 OUT.

4. This endpoint (EP2 OUT and EP4 OUT) is continuously read by the peripheral demo application.

2.8 Note
1. USB-BASIC-FW is not guaranteed to provide USB communication operation. The customer should verify

operation when utilizing it in a system and confirm the ability to connect to a variety of different types of devices.

2. The sample program using DMA transfer function is not provided in USB-BASIC-FW.The sample program using
DTC transfer is provided. Please refer to “11. DTC/EXDMA Transfer” about DTC transfer function.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 15 of 157
Apr 1, 2013

3. How to Register Class Driver
The class driver which the user created functions as the USB class driver by registering with USB-BASIC-FW.

3.1 How to register Peripheral Class Driver
Please consult function usb_papl_registration () in r_usb_vendor_papl.c and register the class driver into USB-BASIC-
FW. For details, please refer to Chapter 4.3.1.

The following describes how to register user-created class drivers and applications in the USB-BASIC-FW.

void usb_papl_registration(USB_UTR_t *ptr)
{

 USB_PCDREG_t driver;

 /* Driver registration */
 /* Pipe Define Table address */
 driver.pipetbl = (uint16_t**)&usb_gpvendor_smpl_epptr;
 /* Device descriptor Table address */
 driver.devicetbl = (uint8_t*)&usb_gpvendor_smpl_DeviceDescriptor;
 /* Qualifier descriptor Table address */
 driver.qualitbl = (uint8_t*)&usb_gpvendor_smpl_QualifierDescriptor;
 /* Configuration descriptor Table address */
 driver.configtbl = (uint8_t**)&usb_gpvendor_smpl_ConPtr;
 /* Other configuration descriptor Table address */
 driver.othertbl = (uint8_t**)&usb_gpvendor_smpl_ConPtrOther;
 /* String descriptor Table address */
 driver.stringtbl = (uint8_t**)&usb_gpvendor_str_ptr;
 /* Driver init */
 driver.classinit = &usb_cvendor_dummy_function;
 /* Device default */
/* Condition compilation by the difference of user define */
#if USB_SPEEDSEL_PP == USB_HS_PP
 driver.devdefault = &usb_pvendor_smpl_DescriptorChange;
#else /* USB_SPEEDSEL_PP == USB_HS_PP */
 driver.devdefault = &usb_cvendor_dummy_function;
#endif /* USB_SPEEDSEL_PP == USB_HS_PP */
 /* Device configured */
 driver.devconfig = &usb_pvendor_apl_init;
 /* Device detach */
 driver.devdetach = &usb_pvendor_apl_close;
 /* Device suspend */
 driver.devsuspend = &usb_cvendor_dummy_function;
 /* Device resume */
 driver.devresume = &usb_cvendor_dummy_function;
 /* Interfaced change */
 driver.interface = &usb_cvendor_dummy_function;
 /* Control Transfer */
 driver.ctrltrans = &usb_cstd_UsrCtrlTransFunction;
 R_usb_pstd_DriverRegistration(ptr, &driver);

}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 16 of 157
Apr 1, 2013

3.2 How to register Host Class Driver
Please consult function usb_hapl_registration () in r_usb_vendor_hapl.c and register the class driver into USB-BASIC-
FW. For details, please refer to the Chapter 5.5.2.

The following describes how to register user-created class drivers and applications in USB-BASIC-FW.

void usb_hapl_registration(USB_UTR_t *ptr)
{

 USB_HCDREG_t driver;

 /* Driver registration */
 /* Interface Class */
 driver.ifclass = (uint16_t)USB_IFCLS_VEN;
 /* Target peripheral list */
 driver.tpl = (uint16_t*)&usb_gapl_devicetpl;
 /* Pipe Define Table address */
 driver.pipetbl = (uint16_t*)&usb_shvendor_smpl_def_eptbl;
 /* Driver init */
 driver.classinit = &usb_cvendor_dummy_function;
 /* Driver check */
 driver.classcheck = &usb_hvendor_class_check;
 /* Device configured */
 driver.devconfig = &usb_hvendor_apl_init;
 /* Device detach */
 driver.devdetach = &usb_hvendor_apl_close;
 /* Device suspend */
 driver.devsuspend = &usb_cvendor_dummy_function;
 /* Device resume */
 driver.devresume = &usb_cvendor_dummy_function;

 R_usb_hstd_DriverRegistration(ptr, &driver);

}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 17 of 157
Apr 1, 2013

4. Peripheral

4.1 Peripheral Control Driver (PCD)
4.1.1 Basic functions
PCD is a program for controlling the hardware. PCD analyzes requests from PDCD (not part of the USB-BASIC-F/W)
and controls the hardware accordingly. It also sends notification of control results using a user provided call-back
function. PCD also analyzes requests from hardware and notifies PDCD accordingly.

PCD accomplishes the following:

1. Control transfers. (Control Read, Control Write, and control commands without data stage.)
2. Data transfers. (Bulk, interrupt) and result notification.
3. Data transfer suspensions. (All pipes.)
4. USB bus reset signal detection and reset handshake result notifications.
5. Suspend/resume detections.
6. Attach/detach detection using the VBUS interrupt.
7. Hardware control when entering and returning from the clock stopped (low-power sleep mode) state.

4.1.2 Issuing requests to PCD
API functions are used when hardware control requests are issued to the PCD and when performing data transfers. API
functions and library functions can be used to obtain information for managing PCD.

In response to a request from an upper layer task, PCD sends a result notification by means of a call-back function.

PCD has no API functions for class/vendor requests.

4.1.3 USB requests
The following standard requests are supported by PCD.

• GET_STATUS
• GET_DESCRIPTOR
• GET_CONFIGURATION
• GET_INTERFACE
• CLEAR_FEATURE
• SET_FEATURE
• SET_ADDRESS
• SET_CONFIGURATION
• SET_INTERFACE

PCD answers requests other than the above with a STALL response.

When the PCD receives one of the above standard requests, it executes the functions listed in Table 4-1 according to the
control transfer stage.

Note that, if the received USB request is a device class request or a vender class request, the user needs to create a
program to judge these requests and register the program in the driver.

The following shows the peripheral processes available for the control transfer stage, based on the standard request
received from a host.

Control read : When a valid request is received, data for transmission to the host is
generated, and written to the FIFO

Control write : When a valid request is received, enables data reception from the host.
Data-less control command : When a valid request is received, returns the status.
Control read status stage : Receives the status from the host.
Control write status stage : Returns the status to the host.
Control transfer end : Sends notification to PDCD of a request received from host.

Actual functions used are shown in the table below.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 18 of 157
Apr 1, 2013

Table 4-1 Peripheral Function Used

Control Transfer Stage Device Class Response to Host
Control read usb_pstd_StandReq1() Transmit data
Control write usb_pstd_StandReq2() Receive data
Control w/o data usb_pstd_StandReq3() Return status
Control read status usb_pstd_StandReq4() Receive status
Control write status usb_pstd_StandReq5() Return status
Control transfer end usb_pstd_StandReq0() None

4.2 API (Application Programming Interface)
This chapter has two sections; “ANSI” API, and PCD API. Select one in r_usb_usrconfig.h.

The ANSI type API is recommended for new projects.

4.2.1 ANSI API
A PDCD module (USB class driver) implements hardware control requests by using the ANSI API.

The ANSI API provides an-ANSI-type interface enabling the use of the same API for applications of different classes.
USB-BASIC-F/W provides five API functions: open(), close(), read(), write(), and control().

[Note]

1. PDCD cannot be registered with the ANSI API. Use the driver registration API
R_usb_pstd_DriverRegistration() to register the PDCD.

2. This ANSI API does not support control transfers during peripheral operations. Use the peripheral control
transfer API R_usb_pstd_ControlRead() /R_usb_pstd_ControlWrite() / R_usb_pstd_ControlEnd() for
control transfers in this case. (See 4.4 Peripheral Control Transfer)

A list of the ANSI-type API functions is shown in Table 4-2.

Table 4-2 List of ANSI API functions

ANSI API Description
open() Confirm whether USB device class communication is enable or not.
close() End USB device class communication
read() Execute USB receive process
write() Execute USB send process
control() Execute process according to control code

4.2.2 General operation using ANSI API
To use the ANSI API, here is the general order of how to set up USB transfers.

1. Call open, with the relevant class number for your system.

2. After a successful open, call control to register the call-back functions that will be called by the Basic FW when
the application later uses the read and write APIs.

3. These application read and write calls will each cause the Basic FW to trigger the respective callbacks for the
transfer types registered by the control call(s), that is, there will be one call for each transfer type and direction.

4. Later, when for example a bulk OUT transfer has been completed, the registered user callback will trigger.

5. When your callback is triggered, take care of the incoming data - or for outgoing data do relevant processing for
successfully sent user data.

6. It is important to determine how many bytes have been sent or received in the user application data arrays. For
the Basic FW’s “vendor class” this application data is in the data arrays usb_gvendor_smpl_bi_data[][],
usb_gvendor_smpl_bo_data[][], usb_gvendor_smpl_ii_data[][], and usb_gvendor_smpl_io_data[][], depending

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 19 of 157
Apr 1, 2013

on which transfer type was used for the pipe (endpoint). Use the control API with the
USB_CTL_RD_LENGTH_GET or USB_CTL_WR_LENGTH_GET parameter. The user data in these data
transfer arrays beyond the length returned by the control call is not to be used . Such data is old (from previous
transfer).

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 20 of 157
Apr 1, 2013

open

Enable USB peripheral device class communication and confirm

Format

int16_t open (int8_t *name, uint16_t mode, uint16_t flg)

Arguments

*name Class code : USB_CLASS_PSTD_BULK / USB_CLASS_PSTD_INT

mode Mode (Not used, set to 0)

flg Flag (Not used, set to 0)

Return Value

－ File number. (Success: 0x10 -- 0x1F /Failure: -1)

As the File Number is required for subsequent communication using read() and write(), the
open() function must be called first.

Description

This function enables the USB device class communication and confirms whether it is enabled or not.

If USB device class communication is enabled, the function sends the file number (0x10～0x1f) as the return value,
if the connection fails, it returns (-1).

When a file number is received, USB device class communications using read() or write() can be performed.

The following is Class code that USB-BASIC-FW supports.

Class Class code Note
VENDOR USB_CLASS_PSTD_BULK USB_CLASS_PSTD_BULK is an example class that

only has (two) bulk type endpoints
VENDOR USB_CLASS_PSTD_INT USB_CLASS_PSTD_INT is an example class which

only has (two) interrupt endpoints.

Note

1. Call this function from the user application. See “4.2.2 General operation using ANSI API”, for more
explanation on how to use this function from the context of a user application.

2. As the file number is required for USB device class communications using read() or write(), the open
function must be called before performing the communication.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 21 of 157
Apr 1, 2013

Example

int16_t usb_smp_fn;
void usb_apl_task()
{
 ：
 usb_smp_fn = open((int8_t *) USB_CLASS_PSTD_BULK, 0, 0);
 if(usb_smp_fn != -1)
 {
 /* USB Transfer */
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 22 of 157
Apr 1, 2013

close

End USB device class communication

Format

int16_t close (int16_t fileno)

Arguments

fileno File number

Return Value

－ Error code

Description

This function ends the USB device class communication specified by the file number.

If the USB device class communication ends successfully, the function sends (0) as the return value. If the
communication fails, it returns (-1).

Note

1. Call this function from the user application.

Example

int16_t usb_smp_fn;
void usb_apl_task()
{
 ：
 err = close(usb_smp_fn);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 23 of 157
Apr 1, 2013

read

USB receive

Format

int32_t read (int16_t fileno, uint8_t *buf, int32_t count)

Arguments

fileno File number

*buf Pointer to data buffer

count Data transfer size

Return Value

－ Error code

Description

This function executes a data receive request for the USB device class specified in the file number.

Data is read from the FIFO buffer of the specified data transfer size (3rd argument), and then stored in the data
buffer (2nd argument).

When the receive process is complete, the call-back function is called. This call-back function is registered by the
Control API. Please refer to control code USB_CTL_RD_NOTIFY_SET in the Control API.

The actual read size can be obtained by using control API after the receive process is complete. Please refer to
control code USB_CTL_RD_LENGTH_GET in the Control API.

Note

1. Call this function from the user application. See “4.2.2 General operation using ANSI API” for more
explanation on how to use this function from the context of a user application.

2. After the file number is received, USB device class communication using this function can be performed.
The file number is obtained by using the Open API.

3. Use the Control API to register the call-back function for notification of data transfer completion before calling
this function.

4. This function only executes a data receive request and does not block any processes. Therefore the return value
is always (-1).

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 24 of 157
Apr 1, 2013

Example

 int16_t usb_smp_fn;
 void usb_apl_task()
 {
 ：
 /* Set data receive complete notification call-back */
 control(usb_smp_fn, USB_CTL_RD_NOTIFY_SET, (void*)&usb_ smp_Read_Notify);
 /* receiving data request */
 read(usb_smp_fn, (uint8_t *)buf, (int32_t)size);
 /* receiving request status check */
 err = control(usb_spvendor_bulk_fn, USB_CTL_GET_READ_STATE, (void*)&state);
 if(err != USB_CTL_ERR_PROCESS_COMPLETE)
 {
 /* Error Processing */
 }
 ：
 }

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 25 of 157
Apr 1, 2013

write

USB send

Format

int32_t write (int16_t fileno, uint8_t *buf, int32_t count)

Arguments

fileno File number

*buf Pointer to data buffer

count Data transfer size

Return Value

－ Error code

Description

This function executes a data transmit request for the USB device class specified in the file number. The data
transmit function writes data to the FIFO buffer in the specified data transfer size (3rd argument). The data to be
written is read from the data buffer (2nd argument).

When the transmit processing is complete, the call-back function is called. This call-back function is registered by
the Control API. Please refer to control code USB_CTL_WR_NOTIFY_SET in the Control API.

The actual write size can be obtained by using control API after the send processing is complete. Please refer to
control code USB_CTL_WR_LENGTH_GET in the Control API.

Note

1. Call this function from the user application. See “4.2.2 General operation using ANSI API”, for more
explanation on how to use this function from the context of a user application.

2. After the file number is received, USB device class communications using this function can be performed.
The file number is obtained by using open API. Please refer to the Open API.

3. Use the Control API to register the call-back function for notification of data transfer completion before
calling this function.

4. This function only executes a data transmit request and no processing can be blocked while the data transmit
is processing. Therefore, the return value is always (-1).

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 26 of 157
Apr 1, 2013

Example

 int16_t usb_smp_fn;
 void usb_apl_task()
 {
 ：
 /* Set data transmit complete notification call-back. */
 control(usb_smp_fn, USB_CTL_WR_NOTIFY_SET, (void*)&usb_ smp_write_Notify);
 /* Data Transmitting request */
 write(usb_smp_fn, (uint8_t *)buf, (int32_t)size);
 /* Transmitting request status check*/
 err = control(usb_spvendor_bulk_fn, USB_CTL_GET_WRITE_STATE,
 (void*)&state);
 if(err != USB_CTL_ERR_PROCESS_COMPLETE)
 {
 /* Error Processing */
 }
 ：
 }

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 27 of 157
Apr 1, 2013

control

Process a control code

Format

int32_t control (int16_t fileno, USB_CTRLCODE_t code, void *data)

Arguments

filneno File number

code Control code

data Pointer to data

Return Value

－ Error code

Description

This function performs according to the control code. If an unsupported control code is specified, the function sends
(-1) as the return value.

The following are control codes supported by control.

Control Code Description
USB_CTL_USBIP_NUM Gets the USB module number.
USB_CTL_RD_NOTIFY_SET Registers the call-back function when the data receive is

completed by read(). Set the call-back function in the 3rd
argument.

USB_CTL_WR_NOTIFY_SET Registers the call-back function when the data send is
completed by write(). Set the call-back function in the 3rd
argument.

USB_CTL_RD_LENGTH_GET Gets the data length read from the FIFO buffer when data is
read.

USB_CTL_WR_LENGTH_GET Gets the data length written to the FIFO buffer when data is
sent.

USB_CTL_GET_RD_STATE Gets the state when data is read.
USB_CTL_GET_WR_STATE Gets the state when data is sent.
USB_CTL_P_RD_TRANSFER_END Forcibly ends data reception in pipe specified in argument.
USB_CTL_P_WR_TRANSFER_END Forcibly ends data transmission in pipe specified in argument.
USB_CTL_P_CHG_DEVICE_STATE Changes USB device to state specified in argument.
USB_CTL_P_GET_DEVICE_INFO Gets state of connected USB device.
USB_CTL_P_RD_SET_STALL Sets STALL to PID of reading pipe.
USB_CTL_P_WR_SET_STALL Sets STALL to PID of writing pipe.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 28 of 157
Apr 1, 2013

Note

Call this function from the user application. See “4.2.2 General operation using ANSI API”, for more explanation on
how to use this function from the context of a user application.

Example

＜USB_CTL_USBIP_NUM＞
int16_t usb_smp_fn;
void usb_apl_task(USB_UTR_t *ptr)
{
 int16_t num;
 ：
 /* Confirmation USBIP Number */
 control(usb_smp_fn, USB_CTL_USBIP_NUM, (void*) &num);
 ：
}

＜USB_CTL_P_RD_TRANSFER_END＞
int16_t usb_smp_fn;
void usb_apl_task(USB_UTR_t *ptr)
{
 USB_CTL_PARAMETER_t smp_parameter;
 ：
 smp_parameter.transfer_end.status = USB_DATA_STOP;
 /* Forcibly ends data reception */
 control(usb_smp_fn, USB_CTL_P_RD_TRANSFER_END, (void)&smp_parameter);
 ：
}

＜USB_CTL_P_WR_TRANSFER_END＞
int16_t usb_smp_fn;
void usb_apl_task(USB_UTR_t *ptr)
{
 USB_CTL_PARAMETER_t smp_parameter;
 ：
 smp_parameter.transfer_end.status = USB_DATA_STOP;
 /* Forcibly ends data transmission */
 control(usb_smp_fn, USB_CTL_P_WR_TRANSFER_END, (void)&smp_parameter);
 ：
}

＜USB_CTL_P_CHG_DEVICE_STATE＞
int16_t usb_smp_fn;
void usb_apl_task(USB_UTR_t *ptr)
{
 USB_CTL_PARAMETER_t smp_parameter;
 ：
 smp_parameter.dev_info.complete = ptr.complete; /* Callback function */
 smp_parameter.dev_info.msginfo = USB_DO_REMOTEWAKUP; /* Set device state */
 /* Changing USB device information */
 control(usb_smp_fn, USB_CTL_P_CHG_DEVICE_STATE, (void)&smp_parameter);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 29 of 157
Apr 1, 2013

＜USB_CTL_P_GET_DEVICE_INFO＞
int16_t usb_smp_fn;
void usb_apl_task(USB_UTR_t *ptr)
{
 USB_CTL_PARAMETER_t smp_parameter;
 ：
 smp_parameter.device_information.tbl = &smp_tbl;
 /* Getting USB device information */
 control(usb_smp_fn, USB_CTL_P_GET_DEVICE_INFO, (void)&smp_parameter);

 /* Device information is set in smp_tbl after processing control API */

}

＜USB_CTL_P_WR_SET_STALL＞
＜USB_CTL_P_RD_SET_STALL＞
/* When the user want to call the call-back function after setting STALL */
int16_t usb_smp_fn;
/* Call-back function */
void usb_complete(uint16_t data1, uint16_t data2)
{
 :
}
void usb_apl_task(void)
{
 USB_CTL_PARAMETER_t smp_parameter;
 ：
 smp_parameter.setstall.complete = usb_complete; /* Call-back function */
 /* Set stall */
 control(usb_smp_fn, USB_CTL_P_WR_SET_STALL, (void*)&smp_parameter);
 ：
}

/* When the user doesn’t want to call the call-back function after setting
STALL */
void usb_apl_task(void)
{
 USB_CTL_PARAMETER_t smp_parameter;
 ：
 smp_parameter.setstall.complete = (USB_CB_t)NULL; /* Sets NULL */
 /* Set stall */
 control(usb_smp_fn, USB_CTL_P_WR_SET_STALL, (void*)&smp_parameter);
 ：
}

＜USB_CTL_RD_NOTIFY_SET＞
＜USB_CTL_GET_RD_STATE＞
＜USB_CTL_RD_LENGTH_GET＞
 Please refer to example of "read" function.

＜USB_CTL_WR_NOTIFY_SET＞
＜USB_CTL_GET_WR_STATE＞
＜USB_CTL_WR_LENGTH_GET＞
 Please refer to example of "write" function.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 30 of 157
Apr 1, 2013

4.2.3 PCD API
A PDCD module (USB class driver) implements hardware control requests by using the PCD API.

The return values of each API function are scheduler macro error codes. A list of PCD API functions is shown in Table
4-3. Any of the functions can be used with the non-ANSI interface. When compiling “with ANSI”, the first part of the
table should not be used in the user application

Table 4-3 List of PCD API Functions

 Function Description
R_usb_pstd_TransferStart() Data transfer execution request

R_usb_pstd_TransferEnd() Data transfer forced end request

R_usb_pstd_PcdChangeDeviceState() USB device state change request

 N
on

-A
N

S
I *

1)

R_usb_pstd_DeviceInformation() Get USB device state information

R_usb_pstd_PcdOpen() Start the PCD task

R_usb_pstd_PcdClose() End the PCD task

R_usb_pstd_DriverRegistration() Register the PDCD

R_usb_pstd_PcdTask() The PCD Task

R_usb_pstd_ControlRead() FIFO access execution request for control read
transfer

R_usb_pstd_ControlWrite() FIFO access execution request for control write
transfer

R_usb_pstd_ControlEnd() Control transfer end request

R_usb_pstd_SetStall() Set STALL to PID of PIPE that is specified by
argument and the callback function is called.

R_usb_pstd_SetPipeStall() Set STALL to PID of PIPE that is specified by
argument.

R_usb_cstd_GetUsbIpAdr() Get USB register base address

R_usb_cstd_UsbIpInit() Initialize USB module

R_usb_cstd_ClearHwFunction() USB-Related Register Initialization Request

R_usb_cstd_SetRegDvstctr0() Set the value to DVSTCTR0 register

A
N

S
I &

 N
on

-A
N

S
I

R_usb_cstd_SetRegPipeCtr() Set the value of PIPExCTR register

[Note]
1. If user selects USB_ANSIIO_USE_PP in the r_usb_usrconfig.h file, the user should not call the functions

described in Non-ANSI field above in the user application.

Example (r_usb_usrconfig.h)
#define USB_ANSIIO_PP USB_ANSIIO_USE_PP ;ANSI I/F

2. User can always call the functions of the "ANSI & Non-ANSI" field . These functions are not related to "Select
ANSI Interface" setting.

The ANSI-type interface described previously is recommended for new projects. Please refer to "4.9.2 User
Configuration File - r_usb_usrconfig.h" about selecting “ANSI Interface".

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 31 of 157
Apr 1, 2013

R_usb_pstd_PcdOpen

Start PCD task

Format

USB_ER_t R_usb_pstd_PcdOpen (USB_UTR_t *ptr)

Arguments

*ptr Pointer to a USB transfer structure

Return Value

[non-OS]

USB_E_OK Success

[RTOS]

－ Error code. Please refer to RI600/4 User's manual for RX family Real-time OS.

Description

[non-OS]

This function initializes the pipe information.

Return value is always USB_E_OK.

[RTOS］

After initializing the pipe information, the function starts the PCD task. The PCD task then waits for requests from
the hardware or PDCD.

Note

1. The user application should register the PDCD in the PCD and then call this function during initialization.
Please register the PDCD by using the function R_usb_pstd_DriverRegistration.

2. Please do not call this function after starting the PCD task

Example

void usb_smp_task()
{
 USB_UTR_t *ptr;
 ：
 R_usb_pstd_PcdOpen(ptr);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 32 of 157
Apr 1, 2013

R_usb_pstd_PcdClose()

End PCD task

Format

USB_ER_t R_usb_pstd_PcdClose(USB_UTR_t *ptr)

Arguments

*ptr Pointer to a USB Transfer Structure

Return Value

[non-OS]

USB_E_OK Success

[RTOS]

－ Error code. Please refer to RI600/4 User's manual for RX family Real-time OS.

Description

[non-OS]

No processing.

Return value is always USB_E_OK.

[RTOS]

Ending PCD task.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. Call this function from the user application or class driver.

3. Please do not call this function after starting PCD task.

Example

void usb_smp_task()
{
 USB_UTR_t *ptr;
 ：
 R_usb_pstd_PcdClose(ptr);
 ：

}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 33 of 157
Apr 1, 2013

R_usb_pstd_TransferStart()

Data transfer request

Format

USB_ER_t R_usb_pstd_TransferStart(USB_UTR_t *ptr)

Arguments

*ptr Pointer to a USB Transfer Structure

Return Value

[non-OS]

USB_E_OK Success

USB_E_ERROR Failure

[RTOS]

－ Error code. Please refer to RI600/4 User's manual for RX family Real-time OS.

Description

This function transfers data via the pipe.

This function executes data transfer requests to the PCD. After receiving the request, PCD executes the data transfer
processing based on the transfer information stored in the USB Transfer Structure. Besides above arguments, also set
the following information of this structure:

USB_MH_t msghead : Set to NULL
uint16_t keyword : Pipe number
void* tranadr : Start address of the data buffer
uint32_t tranlen : Data transfer size
uint16_t setup : Set to 0 (zero)
USB_CB_t complete : Pointer to call-back function
uint8_t segment : Status
USB_REGADR_t ipp : USB register base address
uint16_t ip : USB IP number

When data transfer ends (specified data size reached, short packet received, error occurred), the Transfer Structure’s
call-back function is executed. The remaining transmit/receive data length, status, error count and transfer end is set
as the parameters of this call-back function. Please refer to Table 4-4 R_usb_pstd_TransferStart call-back” about the
call-back function.

Note

Call this function from the user application or class driver.

1. This function is not necessary when using the ANSI IO API.

2. The structure members indicated by the argument include pipe number, transfer data start address, transfer
data length, status, call-back function at end, etc.

3. When the received data is n times of the maximum packet size and less than the expected received data
length, it is considered that the data transfer is not ended and a callback is not generated.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 34 of 157
Apr 1, 2013

Example

USB_UTR_t trn_msg[USB_NUM_USBIP][USB_MAXPIPE_NUM + 1];
USB_ER_t usb_smp_task(USB_UTR_t *ptr, uint16_t pipe, uint32_t size, uint8_t
*table)
{
 ：
 /* Transfer information setting */
 trn_msg[ptr->ip][pipe].msghead = (USB_MH_t)NULL; /* NULL only */
 trn_msg[ptr->ip][pipe].keyword = pipe; /* Pipe No*/
 trn_msg[ptr->ip][pipe].tranadr = table; /* Pointer to data buffer */
 trn_msg[ptr->ip][pipe].tranlen = size; /* Transfer size */
 trn_msg[ptr->ip][pipe].setup = 0;
 trn_msg[ptr->ip][pipe].complete = ptr->complete; /* Call-back function */
 trn_msg[ptr->ip][pipe].segment = USB_TRAN_END; /* status */
 trn_msg[ptr->ip][pipe].ipp = ptr->ipp; /* USB IP base address */
 trn_msg[ptr->ip][pipe].ip = ptr->ip; /* USB IP No */

 /* Data transfer request */
 err = R_usb_pstd_TransferStart((USB_UTR_t *)&trn_Msg [ptr->ip][pipe]);

 return err;
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 35 of 157
Apr 1, 2013

R_usb_pstd_TransferEnd

Data transfer forced end request

Format

USB_ER_t R_usb_pstd_TransferEnd(USB_UTR_t *ptr, uint16_t pipe, uint16_t status)

Arguments

*ptr Pointer to a USB transfer structure

pipe Pipe number

status USB communication status

Return Value

[non-OS]

USB_E_OK Success

USB_E_ERROR Failure

 [RTOS]

－ Error code. Please refer to RI600/4 User's manual for RX family Real-time OS.

Description

This function forces data transfer via the specified pipe to end.

The function executes a data transfer forced end request to the PCD. After receiving the request, the PCD executes
the data transfer forced end request processing.

When a data transfer is forcibly ended, the function calls the call-back function set in “R_usb_pstd_TransferStart” at
the time the data transfer was requested. The information of the remaining transmit/receive data length, status, error
count and transfer end is set in the parameter of this call-back.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. Call this function from the user application or class driver.

3. This function is not necessary when using an ANSI IO API.

Example

void usb_smp_task(USB_UTR_t *ptr)
{
 uint16_t status;
 uint16_t pipe;
 ：
 pipe = USB_PIPE1;
 status = USB_DATA_STOP;

 /* Transfer end request */
 err = R_usb_pstd_TransferEnd(ptr, pipe, status);

 return err;
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 36 of 157
Apr 1, 2013

R_usb_pstd_PcdChangeDeviceState

USB peripheral device state change request

Format

USB_ER_t R_usb_pstd_PcdChangeDeviceState (USB_UTR_t *ptr, uint16_t state, uint16_t port_no,

 USB_CB_INFO_t complete)

Arguments

*ptr Pointer to a USB Transfer Structure

state Device state to be transitioned to

port_no Port number

complete Call-back function executed at end of PCD processing

Return Value

［non-OS］

USB_E_OK Success

USB_E_ERROR Failure

［RTOS］

－ Error code. Please refer to RI600/4 User's manual for RX family Real-time OS

Description

This function sends a request to the PCD to change the USB device state by setting one of the following values of
argument “state”, and then call the ‘complete’ call-back function.

・USB_DO_REMOTEWAKEUP

Remote wakeup execution request to PCD

・USB_DP_ENABLE

D+ line pull-up request to PCD

・USB_DP_DISABLE

D+ line pull-up cancel request to PCD

・USB_DO_STALL

STALL response execution request to PCD.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. Call this function from the user application or class driver.

3. If connected/disconnected interrupt is detected, a D+ line pull-up cancel is executed automatically by
firmware.

4. This function is not necessary when using the ANSI IO API

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 37 of 157
Apr 1, 2013

Example

void usb_smp_task(USB_UTR_t *ptr)
{
 ：
 /* STALL response request */
 R_usb_pstd_PcdChangeDeviceState(ptr, USB_DO_STALL, USB_PIPE0, usb_smp_dummy)
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 38 of 157
Apr 1, 2013

R_usb_pstd_DeviceInformation

Get a USB peripheral’s device state information

Format

void R_usb_pstd_DeviceInformation (USB_UTR_t *ptr, uint16_t *tbl)

Arguments

*ptr Pointer to a USB Transfer Structure

*tbl Pointer to the buffer that the device information is stored.

Return Value

－ －

Description

This function gets USB peripherals device state information. It stores the following information at the address
designated by the argument “tbl”.

[0] : USB device state
[1] : USB transfer speed
[2] : Configuration number used
[3] : Interface number used
[4] : Remote Wakeup Flag

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure before calling this
function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. Call this function from the user application or class driver.

3. This function is not necessary when using an ANSI IO API.

Example

void usb_smp_task(USB_UTR_t *ptr)
{
 uint16_t res[5];
 ：
 /* Get USB Device Information */
 R_usb_pstd_DeviceInformation(ptr, (uint16_t *)res);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 39 of 157
Apr 1, 2013

R_usb_pstd_DriverRegistration

Register a PDCD

Format

void R_usb_pstd_DriverRegistration (USB_UTR_t *ptr, USB_PCDREG_t *registinfo)

Arguments

*ptr Pointer to a USB Transfer Structure

*registinfo Pointer to class driver structure. (See section 4.3.1 for information on this structure)

Return Value

－ －

Description

This function registers the PDCD information, which is registered in the class driver structure, in the PCD. After
registration is complete, the initialization call-back function is executed.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure before calling this
function:

USB_REGADR_t ipp ：USB register base address
uint16_t ip ：USB IP number

2. The user must call this function from the user’s program during initialization.

3. Only one device can be registered.

Example

void usb_smp_registration(USB_UTR_t *ptr)
{
 USB_PCDREG_t driver;
 ：
 /* Register PDCD information to driver */
 /* Pipe Define Table address */
 driver.pipetbl = (uint16_t**)&usb_gpvendor_smpl_epptr;
 /* Device descriptor Table address */
 driver.devicetbl = (uint8_t*)&usb_gpvendor_smpl_DeviceDescriptor;
 /* Qualifier descriptor Table address */
 driver.qualitbl = (uint8_t*)&usb_gpvendor_smpl_QualifierDescriptor;
 /* Configuration descriptor Table address */
 driver.configtbl = (uint8_t**)&usb_gpvendor_smpl_ConPtr;
 /* Other configuration descriptor Table address */
 driver.othertbl = (uint8_t**)&usb_gpvendor_smpl_ConPtrOther;
 /* String descriptor Table address */
 driver.stringtbl = (uint8_t**)&usb_gpvendor_str_ptr;
 /* Driver init */
 driver.classinit = &usb_cvendor_dummy_function;

 R_usb_pstd_DriverRegistration(ptr, &driver);
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 40 of 157
Apr 1, 2013

R_usb_pstd_PcdTask

The PCD Task

Format

void R_usb_pstd_PcdTask(USB_VP_INT stacd)

Arguments

stacd Task start code Not used

Return Value

－ －

Description

This function executes hardware control when running as a USB peripheral.

Note

1. Call this in the loop that executes the scheduler processing for non-OS.
See “Figure 4-2 Static State Program Flow “for a usage example.

2. This function does not need to be called for RTOS.

Example

void usb_smp_mainloop(void)
{
 while(1)
 {
 /* Start non-OS scheduler */
 R_usb_cstd_Scheduler();
 /* Flag checking */
 if(USB_FLGSET == R_usb_cstd_CheckSchedule())
 {
 ：
 R_usb_pstd_PcdTask((USB_VP_INT)0);
 ：
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 41 of 157
Apr 1, 2013

R_usb_pstd_ControlRead

FIFO access request for control read transfer

Format

uint16_t R_usb_pstd_ControlRead(USB_UTR_t *ptr, uint32_t bsize, uint8_t *table)

Arguments

*ptr Pointer to a USB transfer structure, containing pipe number, read size, etc

bsize Transmit data buffer size

*table Pointer to transmit data buffer address.

Return Value

end_flag Data transfer result

Description

During a control IN transfer, this function issues a FIFO access execution request to PCD during the data stage.

PCD reads data from the area referenced by the argument (table) and writes it to the FIFO buffer of the hardware.

This function returns the following result as return value.

・USB_WRITESHRT

Data write end (short packet data write)

・USB_WRITEEND

Data write end (no additional data/transmission of packet with data length 0）

・USB_WRITING

Data write in progress (additional data present)

・USB_FIFOERROR

FIFO access error

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure before calling this
function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. Please call this function at the control IN transfer data stage. Please refer to 4.4 Peripheral Control Transfer.

Example

void usb_smp_task(USB_UTR_t *ptr)
{
 ：
 R_usb_pstd_ControlRead(ptr, (uint32_t)1, (uint8_t*)(& usb_smp_buf));
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 42 of 157
Apr 1, 2013

R_usb_pstd_ControlWrite

FIFO access request for control write transfer

Format

void R_usb_pstd_ControlWrite (USB_UTR_t *ptr, uint32_t bsize, uint8_t *table)

Argument

*ptr Pointer to a USB transfer structure containing pipe number etc

bsize Receive data buffer size for control write transfer

*table Receive data buffer address for control write transfer

Return Value

－ －

Description

During a control transfer data stage, this function issues a FIFO access execution request to PCD.

PCD reads data from the FIFO buffer of the hardware and writes it to the area referenced by the argument table.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. Please call this function at the control OUT transfer data stage. Please refer to 4.4 Peripheral Control
Transfer.

Example

uint8_t usb_smp_buf;
void usb_smp_task(USB_UTR_t *ptr)
{
 ：
 R_usb_pstd_ControlWrite(ptr, (uint32_t)1, (uint8_t*)(& usb_smp_buf));
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 43 of 157
Apr 1, 2013

R_usb_pstd_ControlEnd

Control transfer end request

Format

void R_usb_pstd_ControlEnd (USB_UTR_t *ptr, uint16_t status)

Argument

*ptr Pointer to a USB Transfer Structure

status Status

Return Value

－

Description

This function issues a request for control transfer status stage execution to PCD. It is called at the control transfer
status stage.

Besides above arguments, also set the following value for the status argument.

・USB_CTRL_END

Status stage normal end.

・USB_DATA_STOP

Return NAK to host at status stage.

・USB_DATA_OVR

Return STALL to host at status stage.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. Please call this function at the control transfer status stage. Refer to 4.4 Peripheral Control Transfer.,

Example

void usb_smp_task(USB_UTR_t *ptr)
{
 ：
 R_usb_pstd_ControlEnd(ptr, (uint16_t)USB_CTRL_END);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 44 of 157
Apr 1, 2013

R_usb_pstd_SetStall

Set STALL to PID of PIPE with callback

Format

void R_usb_pstd_SetStall (USB_UTR_t *ptr, USB_UTR_t complete, uint16_t pipeno)

Argument

*ptr Pointer to a USB Transfer Structure

Complete Callback function

pipeno Pipe number

Return Value

－ －

Description

Set STALL as PID of the pipe number specified by the argument. The callback function that is specified by
argument complete will be called when a stall packet has been sent.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure.

 USB_REGADR_t ipp ：USB register base address

 uint16_t ip ：USB IP number

2. Call this function from the user application, or the class driver.

Example

void usb_smp_task(USB_UTR_t *ptr)
{
 ：
 R_usb_pstd_SetStall(ptr, (USB_CB_t)setstall_cb, pipeno);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 45 of 157
Apr 1, 2013

R_usb_pstd_SetPipeStall

Set STALL to PID of PIPE (no callback)

Format

void R_usb_pstd_SetStall (USB_UTR_t *ptr, uint16_t pipeno)

Argument

*ptr Pointer to a USB Transfer Structure

pipeno Pipe number

Return Value

－ －

Description

Setting STALL as PID for the specified pipe number

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. Please call this function from the user application or the device class.

Example

void usb_smp_task(USB_UTR_t *ptr)
{
 ：
 R_usb_pstd_SetPipeStall(ptr, pipeno);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 46 of 157
Apr 1, 2013

R_usb_cstd_GetUsbIpAdr

Get the USB register base address

Format

void R_usb_cstd_GetUsbIpAdr (uint16_t usbip)

Argument

usbip USB IP number

Return Value

USB register base address

Description

Return USB register base address of the specified USB IP .

Note

Please call this function from the user application.

Example

void usb_smp_task(void)
{
 USB_UTR_t utr;
 :
 utr.ip = USB_HOST_USBIP_NUM;
 utr.ipp = R_usb_cstd_GetUsbIpAdr(USB_HOST_USBIP_NUM);
 :
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 47 of 157
Apr 1, 2013

R_usb_cstd_UsbIpInit

Initialize the USB module

Format

void R_usb_cstd_UsbIpInit (USB_UTR_t *ptr)

Argument

*ptr Pointer to a USB Transfer Structure

Return Value

－

Description

Initialize the USB IP module specified by the USB Transfer Structure.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. The user must call this function from the user application during initialization.

Example

void usb_smp_init(void)
{
 ：
 USB_UTR_t utr;
 :
 utr.ip = USB_HOST_USBIP_NUM;
 utr.ipp = R_usb_cstd_GetUsbIpAdr(USB_HOST_USBIP_NUM);
 :
 R_usb_cstd_UsbIpInit(&utr);
 ：

}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 48 of 157
Apr 1, 2013

R_usb_cstd_ClearHwFunction

USB H/W register initialization

Format

void R_usb_cstd_ClearHwFunction (USB_UTR_t *ptr)

Argument

*ptr Pointer to a USB Transfer Structure

Return Value

－

Description

USB H/W register initialization request

Note

Besides above arguments, also set the following members of the USB Transfer Structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 49 of 157
Apr 1, 2013

R_usb_cstd_SetRegPipeCtr

Set the value of PIPExCTR register

Format

void R_usb_cstd_SetRegPipeCtr(USB_UTR_t *ptr, uint16_t pipeno, uint16_t data)

Argument

*ptr Pointer to a USB Transfer Structure

pipeno Pipe number

data Setting value to register

Return Value

－

Description

Set the value(3rd parameter) to PIPExCTR Register for pipe number(2nd parameter).

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. This function is used for OTG.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 50 of 157
Apr 1, 2013

4.2.4 PCD Call-back functions

Table 4-4 R_usb_pstd_TransferStart call-back

Call-back Data Transfer Request call-back function
Call format (*USB_CB_t)(USB_UTR_t *);
Arguments USB_UTR_t * Submitted USB_UTR_t pointer
Return values ⎯ ⎯ ⎯

Description

This function is executed at data transfer* end. (A transfer end condition at the end of a
data transfer, of the size specified by the transfer application, when a short packet is
received.).
The remaining transmit/receive data length and the error count are updated.

Notes Bulk/Interrupt data transfer

Table 4-5 Call-back of control transfer

Call-back Call-back function of control transfer without standard request
Call format (*USB_CB_TRN_t)(USB_UTR_t *, USB_REQUEST_t *, uint16_t);

USB_UTR_t * Pointer to a USB Transfer Structure
USB_REQUEST_
t * Information of request Arguments

uint16_t Information of stage
Return values ⎯ ⎯ ⎯
Description This call-back is called by USB interrupt in control transfer without standard request.
Notes

Table 4-6 Other call-backs

Call-back Other call-back Functions
Call format (*USB_CB_INFO_t)(USB_UTR_t *,uint16_t, uint16_t)

USB_UTR_t * Pointer to a USB Transfer Structure
uint16_t NOARGUMENT: Not used Arguments
uint16_t NOARGUMENT: Not used

Return values ⎯ ⎯ ⎯

Description

usb_pstd_Remote: Executed at end of remote wakeup processing.
usb_pstd_ClearSeqbit: Executed when the sequence toggle bit is cleared.
R_usb_pstd_SetStall: Executed when the sequence toggle bit is set to the stall state.
R_usb_pstd_TransferEnd: Executed at data transfer end.

Notes

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 51 of 157
Apr 1, 2013

4.3 Structure Definitions
The structures used in USB peripheral mode are described below. They are defined in file usb_ctypedef.h.

4.3.1 USB_PCDREG_t structure
The USB_PCDREG_t structure is used to register PDCD information using the function
R_usb_pstd_DriverRegsitration. The call-back function registered in USB_PCDREG_t is executed when the device
state changes, etc.

Table 4-7 lists the members of the USB_PCDREG_t structure.

Table 4-7 Member of USB_PCDREG_t structure

type member Description
uint16_t **pipetbl Register the address of the pipe information table.
uint8_t *devicetbl Register the device descriptor address.
uint8_t *qualitbl Register the device qualifier descriptor address.
uint8_t **configtbl Register the address of the configuration descriptor address table.
uint8_t **othertbl Register the address of the other speed descriptor address table.
uint8_t **stringtbl Register the address of the string descriptor address table.
USB_CB_INFO_t classinit Register the function to be started when initializing PDCD.

It is called at registration.
USB_CB_INFO_t devdefault Register the function to be started when transitioning to the default

state. It is called when a USB reset is detected.
USB_CB_INFO_t devconfig Register the function to be started when transitioning to the

configured state. It is called in the SET_CONFIGURATION request
status stage.

USB_CB_INFO_t devdetach Register the function to be started when transitioning to the detach
state. It is called when a detached condition is detected.

USB_CB_INFO_t devsuspend Register the function to be started when transitioning to the
suspend state. It is called when a suspend condition is detected.

USB_CB_INFO_t devresume Register the function to be started when transitioning to the resume
state. It is called when a resume condition is detected.

USB_CB_INFO_t interface Register the function to be started when an interface change
occurs. It is called in the SET_INTERFACE request status stage.

USB_CB_TRN_t ctrltrans Register the function to be started when a user-initiated control
transfer occurs.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 52 of 157
Apr 1, 2013

4.3.2 The USB_REQUEST structure
USB_REQUEST_t is the structure where the latest USB request other than the standard request is stored.

This structure is used as the argument to the call-back function that was registered in member ctrltrans of the
USB_PCDREG_t structure.

Table 4-8 shows the member of USB_REQUEST_t structure.

 Table 4-8 Member of USB_REQUEST_t structure

Type Member Description
uint16_t ReqType The value is bmRequestType[D7-D0] of request.

(The value is BMREQUESTTYPE of USBREQ register.)
When this value is used, mask with USBC_BMREQUESTTYPE(0x00FFu).

uint16_t ReqTypeType The value is Type of bmRequestType[D6-D5] of request.
(The value is b6-5 of BMREQUESTTYPE of USBREQ register.)
When this value is used, mask with USBC_BMREQUESTTYPETYPE(0x0060u)

uint16_t ReqTypeRecip The value is Recipient of bmRequestType[D4-D0] of request.
(The value is b4-0 of BMREQUESTTYPE of USBREQ register.)
When this value is used, mask with
USBC_BMREQUESTTYPERECIP(0x001Fu)

uint16_t ReqRequest The value is bRequest of request.
(The value is BREQUEST of USBREQ register.)
When this value is used, mask with USBC_BREQUEST(0xFF00u)

uint16_t ReqValue The value is wValue of request.
(The value is USBVAL register.)

uint16_t ReqIndex The value is wIndex of request.
(The value is USBINDEX register.)

uint16_t ReqLength The value is wLength of request.
(The value is USBLENG register.)

4.4 Peripheral Control Transfer
This section provides a transfer control sample program which uses the API provided by the USB-BASIC-F/W. The
sample illustrates a control transfer that occurs when a class request is made from PDCD.

The following functions are required for control transfer processing.

1. Setup stage class request function. (This function shall match the user system. Refer to 4.4.1, Class request
processing.)

2. Data stage API functions (R_usb_pstd_ControlRead / R_usb_pstd_ControlWrite).
3. Status stage API function (R_usb_pstd_ControlEnd)

Note: Class request functions must be created by the user.

4.4.1 Class request processing
When a class control request is received by USB-BASIC-FW, the contents of the request are stored in the global variable
usb_gpstd_ReqReg (type USB_REQUEST_t). Then, the function (the class request processing call-back) registered in
ctrltrans of the USB_PCDREG_t structure is run. The USB communication structure (USB_UTR_t), the request
information and control transfer stage information are set as the argument of the called function. The user needs to
describe the class request processing in this class request processing call-back. This class request processing function is
called at the data stage and the status stage.

An example of how to create a class request processing function is described below. This is also the ctrltrans member of
structure USB_PCDREG_t.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 53 of 157
Apr 1, 2013

＜Example class request processing function＞

void usb_pvendor_UsrCtrlTransFunction(USB_UTR_t *ptr, USB_REQUEST_t *preq,
uint16_t ctsq)
{
 If (preq->ReqTypeType == USB_CLASS)
 {
 /* Switch on control transfer stage. */
 switch (ctsq)
 {
 /* Idle or Setup stage */
 case USB_CS_IDST: usb_ pvendor _ControlTrans0(ptr); break;
 /* Control read Data stage */
 case USB_CS_RDDS: usb_ pvendor _ControlTrans1(ptr, preq); break;
 /* Control write Data stage */
 case USB_CS_WRDS: usb_ pvendor _ControlTrans2(ptr, preq); break;
 /* Status stage of a control write without a Data stage.*/
 case USB_CS_WRND: usb_ pvendor _ControlTrans3(ptr, preq); break;
 /* Control read Status stage */
 case USB_CS_RDSS: usb_ pvendor _ControlTrans4(ptr, preq); break;
 /* Control write Status stage */
 case USB_CS_WRSS: usb_ pvendor _ControlTrans5(ptr, preq); break;
 /* Control sequence error */
 case USB_CS_SQER: R_usb_pstd_ControlEnd(ptr, (uint16_t)USB_DATA_ERR);
 break;
 /* Illegal */
 default: R_usb_pstd_ControlEnd(ptr, (uint16_t)USB_DATA_ERR); break;
 }
 }
 else
 {
 usb_cstd_SetStall(ptr, (uint16_t)USB_PIPE0);
 }
}

1. Data stage processing

If the received request is supported, please transfer the data to host by using the R_usb_pstd_ControlRead() or
R_usb_pstd_ControlWrite API.

If the received request is not supported, return STALL to host by using R_usb_pstd_SetStall() API.

The following function is called in the class request processing function..

a). usb_ pvendor _ControlTrans1()
b). usb_ pvendor _ControlTrans2()

2. Status stage processing

If there was no problem in the setup or data stage, finish the control transfer with a proper status stage by calling
R_usb_pstd_ControlEnd() with USB_DATA_END as the 2nd parameter.

If a parameter is received which is not supported in the setup stage or the data stage, return a STALL packet to host by
using the usb_pstd_ControlEnd() API.

The following function is called in the class request processing function..

a). usb_ pvendor _ControlTrans3()
b). usb_ pvendor _ControlTrans4()
c). usb_ pvendor _ControlTrans5()

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 54 of 157
Apr 1, 2013

4.4.2 Note
Make sure that the capacity of the user buffer exceeds the transmit/receive data size (Bsize) of the control transfer data
stage.

4.5 Data Transfer
4.5.1 Transfer requests
When using the ANSI-type interface, use read() or write() to start a data transfer request.

When not using the ANSI-type interface, use R_usb_pstd_TransferStart() to start a data transfer. For more details on the
API functions described here, please refer to the corresponding API section.

4.5.2 Notification of transfer result
When a data transfer completes, the firmware notifies the PDCD of the data transfer completion and the sequence toggle
bit information in the call-back function registered when the data transfer was requested.

The results of the transfer are stored in the USB_UTR_t structure member status.

The USB_UTR_t structure is provided to PDCD (by PCD) as the first argument of the callback function..

The following shows the transfer result.

USB_DATA_NONE : Data transmit normal end
USB_DATA_OK : Data receive normal end
USB_DATA_SHT : Data receive normal end with less than specified data length
USB_DATA_STALL : STALL response or MaxPacketSize error detected
USB_DATA_STOP : Data transfer forced end
USB_DATA_TMO : Forced end due to timeout, no call-back (uITRON only)

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 55 of 157
Apr 1, 2013

4.5.3 The USB Communication Structure (USB_UTR_t）
The following describes the structure members used for data transfer.

USB communication with a connected host or peripheral device, with the exception of control transfer during peripheral
operation, can be accomplished by notifying the following structure to PCD.

Table 4-9 shows the members of the USB Transfer Structure.

Table 4-9 USB Communication Structure members
and description for use with peripheral

Type Member Description
USB_MH_t msghead This message header is used by the OS (or non-OS messaging

system). It should not be used by the application.
uint16_t msginfo Message type.

Specifies the request contents.
Specifies USB-BASIC-FW using an API function.
Specifies USB_MSG_PCD_SUBMITUTR for USB communication

uint16_t keyword Sub-code
Specifies the pipe number or the port number etc for USB
communication

USB_REGADR_t ipp Set USB IP base address
uint16_t ip Set USB IP number
uint16_t result Result of USB transfer. Set by PCD/HCD.
USB_CB_t complete Callback function.

Specifies the address of the function to be executed when USB
communication ends. Use the following type declaration for the
call-back function.
typedef void (*USB_CB_t)(USB_UTR_t*);

void *tranadr USB communication buffer address
Provides notification of the USB communication buffer address.

uint32_t tranlen USB communication data length.
Specify a transfer size smaller than the user buffer size.

uint16_t *setup Not used in USB peripheral mode.
uint16_t status USB communication status

PCD/HCD returns the USB communication result.
Please refer to "4.5.2 Notification of transfer result".

uint16_t pipectr PIPECTR register.
PCD returns the PIPECTR register content.
PCD specify the transfer start toggle state for continuous
communication.

uint8_t errcnt Stores the number of errors that occurred during transfer.
uint8_t segment Segment information

Provides notification of transfer continuation/end.
int16_t fn File number.

Only for the ANSI-type interface.
void *usr_data Set the variety information.

Additional Communication Structure details for peripheral

1. Buffer address for USB communication (tranadr)

Reception or ControlRead transfer: Specifies the address of the buffer for storing receive data.
Transmission or ControlWrite transfer: Specifies the address of the buffer for storing transmit data.
NoDataControl transfer: Ignored if specified.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 56 of 157
Apr 1, 2013

2. USB communication data length (tranlen)

Reception or ControlRead transfer: Stores the receive data length.

Transmission or ControlWrite transfer: Stores the transmit data length.

NoDataControl transfer: Set to 0.

The remaining transmit/receive data length is stored after USB communication end. In case of control transfer in host
mode, the remaining data length from the data stage is stored.

3. Pipe control (pipectr)

PDCD can perform communication with multiple endpoint addresses over a single pipe by remembering the sequence
toggle bit information in this register. When specifying transfer continuation, set the SQMON bit in this register to the
previous toggle state.

4. Segment information (segment)

Control transfer continuation: Specify USB_TRAN_CONT (continuation of transfer from data stage enabled).

Control transfer end: Specify USB_TRAN_END.

Data transfer continuation: Specify USB_TRAN_CONT. (Set SQMON bit in PIPECTR.)

Data transfer end: Specify USB_TRAN_END.

4.5.4 Notes on data transfer
When the maximum packet size is an odd number and one packet is not equivalent to one transfer, the CPU may generate
an address exception during buffer access。

4.5.5 Notes on data reception
Use a transaction counter for the receive pipe.

When a short packet is received, the expected remaining receive data length is stored in tranlen of USBC_UTR_t structure
and this transfer is ended. When the received data exceeds the buffer size, data read from the FIFO buffer up to the buffer
size and this transfer is ended. When the user buffer area is insufficient to accommodate the transfer size, the
usb_cstd_DataEnd() function may clear the receive packet in some cases. (It should be used with the SHTNAK function,
transaction counter function, single buffer setting, etc.

When using DTC, the buffer size must be an integral multiple of the maximum packet size.

4.5.6 Data transfer overview
The following shows an overview of data transfer with an example.

ANSI Interface

After open() processing is complete, control() is used to set the call-back function for the APL.

read()/write() is called and data transfer request executed.

After data transfer is complete, the call-back function that was set in (2) above is called and the transfer results are
thereby notified to the PDCD. Please refer to 4.5.2, Notification of transfer result.

Non-ANSI Interface

Transfer is done by APL or PDCD the USB_UTR_t structure members listed below.

keyword : Pipe number

tranadr : Pointer to a data buffer containing data to be transmitted.

tranlen : Transfer Size

segment : USB_TRAN_END

complete : Executed call-back function at the data transfer end.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 57 of 157
Apr 1, 2013

R_usb_pstd_TransferStart() is called and data transfer request executed.

After data transfer is complete, the call-back function “complete” that was set in (1) above for is called and the transfer
results are notified to PDCD. Refer to 4.5.2, Notification of transfer result.

4.6 Pipe Definition

4.6.1 Overview
When using the device in peripheral mode, the PDCD (the class driver) must store appropriate pipe settings as a pipe
information table.

A sample pipe information table for the peripheral sample program is in file r_usb_vendor_descriptor.c.

4.6.2 Pipe information table
A pipe information table comprises the following six items (uint16_t × 6).

1. Pipe Window Select register (address 0x64)
2. Pipe Configuration register (address 0x68)
3. Pipe Buffer Designation register (address 0x6A)
4. Pipe Maximum Packet Size register (address 0x6C)
5. Pipe Period Control register (address 0x6E)
6. FIFO port usage method

4.6.3 Definition of pipes 1 to 9
The pipe definitions provided as a sample in USB-BASIC-FW are configured as shown below.

Possible pipe values that can be set in the pipe information table are defined as macros in the r_usb_cdefusbip.h file.

＜Example of Pipe Information table ＞

uint16_t usb_gpvendor_smpl_eptbl1[] = <-- Registered Pipe Information Table
{
 USB_PIPE1, <-- Pipe definition item 1
 USB_BULK|USB_BFREOFF|USB_DBLBON|USB_SHTNAKON|USB_DIR_P_IN|USB_EP1, <-- Pipe
 definition item 2
 USB_NONE, <-- Pipe definition item 3
 64, <-- Pipe definition item 4
 USB_IFISOFF | USB_IITV_TIME(0u), <-- Pipe definition item 5
 USB_CUSE, <-- Pipe definition item 6
 <NEW PIPE start in this position>
 ：
 USB_PDTBLEND,
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 58 of 157
Apr 1, 2013

1). Pipe definition item 1

Specify the value to be set in the Pipe Window select register.

Pipe select : Specify the selected pipe (USB_PIPE1 to USB_PIPE9)

Restrictions
 -

2). Pipe definition item 2

Specify the values to be set in the Pipe Configuration register. This item consists of 7 bit-fields and is set by OR-ing
together the respective field values (macros) below:

Transfer type : Specify one among USB_BULK, USB_INT
BRDY operation designation : Specify either USB_BFREON or USB_BFREOFF
Double buffer mode : Specify either USB_DBLBON or USB_DBLBOFF
Continuous transmit/receive mode : Specify USB_CNTMDOFF
SHTNAK operation designation : Specify either USB_SHTNAKON or USB_SHTNAKOFF
Transfer direction : Specify either USB_DIR_P_OUT or USB_DIR_P_IN.
Endpoint number : Specify the endpoint number (EP1 to EP15)

Restrictions
• The values that can be set for the transfer type differ according to the selected pipe. For details, refer to the
 hardware manual of the corresponding device.
• For a pipe set to the receive direction, specify USBC_SHTNAKON.
• The continuous transfer mode setting is only valid for R8A66597/R8A66593.
• The same endpoint number may not be set for pipes with different direction settings.

3). Pipe definition item 3

Specify the settings for the Pipe Buffer Designation register. This item is only for R8A66597/R8A66593.

Buffer size : Specify the pipe buffer size in 64-byte units
Buffer number : Specify the buffer start number

Restrictions
• Make settings such that buffer areas in use at the same time do not overlap.
• When the USB_DBLBON setting is used, twice the area is needed.

4). Pipe definition item 4

Specify the settings for the Pipe Maximum Packet size register.

Maximum packet size : Specify the maximum packet size for the pipe
Restrictions

• The values that can be set for the maximum packet size differ according to the device.
 For details, refer to the hardware manual of the corresponding device.

5). Pipe definition item 5

Specify the settings for the Pipe Period Control register. See the HW manual for more information.

In-buffer flush : Specify USBC_IFISOFF.
Interval duration : Specify the interval value (0 to 7).

Restrictions

• When transfer type other than USB_ISO is used, set USB_IFISOFF to ISO IN buffer flash.
• When selecting pipes 3 to 5, specify value 0 for the interval duration.

6). Pipe definition item 6

Specify the FIFO port for the pipe to use, and how to access it.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 59 of 157
Apr 1, 2013

USB_CUSE : CPU access using CFIFO
USB_D0USE : CPU access using D0FIFO
USB_D0DMA : DTC/DMA access using D0FIFO
USB_D1USE : CPU access using D1FIFO
USB_D1DMA : DTC/DMA access using DD1FIFO

See “11. DTC/EXDMA Transfer” about using DTC

Restrictions

・ The transaction counter work to the receive direction pipe.
・ No sample program are provided for USBC_D0USE and USBC_D1DMA

7). Other pipe setting notes

Use device class to specify transfer unit communication synchronization.
Do not fail to write USBC_PDTBLEND at the end of the table.

4.7 Descriptor
In order for USB-BASIC-FW to operate in peripheral mode, it is necessary to create a descriptor table that matches the
class under development. (A sample table is included in r_usb_vendor_descriptor.c.)

The descriptor definitions comprise the following four types.

1. Standard Device Descriptor : uint8_t usb_gpvendor_smpl_DeviceDescriptor[]
2. Device Qualifier Descriptor : uint8_t usb_gpvendor_smpl_QualifierDescriptor[]
3. Configuration

Other_Speed_Configuration
Interface
Endpoint

: uint8_t
uint8_t

usb_gpvendor_smpl_ConfigurationH_1[]
usb_gpvendor_smpl_ConfigurationF_1[]

4. String Descriptor : uint8_t
uint8_t
uint8_t
uint8_t
uint8_t
uint8_t

usb_gpvendor_string_descriptor0[]
usb_gpvendor_string_descriptor1[]
usb_gpvendor_string_descriptor2[]
usb_gpvendor_string_descriptor3[]
usb_gpvendor_string_descriptor4[]
usb_gpvendor_string_descriptor5[]

Note:

1. For details of each descriptor, see chapter 9 of the USB revision 2.0 specification
2. When making changes to descriptor definitions, it is also necessary to make changes to the pipe information table

to match the endpoint descriptors.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 60 of 157
Apr 1, 2013

4.8 Peripheral sample program
4.8.1 Function
USB-BASIC-FW peripheral sample program is configured with a sample vendor class driver and sample application and
includes the following functions.

・ Operation confirmation is possible using “USBCommandVerifier.exe".
・ Data transfer with USB-BASIC-FW host sample program (see “5.10 Host Sample Program).
・ Works with the new ANSI-type interface.

Operation confirmation with “USBCommandVerifier.exe"

The peripheral sample program operation can be confirmed based on the device framework test tool
“USBCommandVerifier.exe” (USBCV）provided by the USB Implementers Forum (USB-IF). Supported test items are
listed in Chapter 9.

Data communications with a host sample program

The peripheral sample program can communicate with a host running the USB-BASIC-F/W host sample program,
transferring bulk and interrupt data. This could even be run on one MCU if the board has two USB ports; an A-port
(host) and a B-port (peripheral).

4.8.2 Operation of a peripheral sample program
The following describes an example of the peripheral sample program in the non-OS configuration.

1. Initialization

When the device goes to the reset state, the PowerON_Reset_PC function in resetprg.c is called. The
PowerON_Reset_PC function initializes the MCU, sections, the scheduler, etc., and then calls the usb_cstd_main_task
function in main.c. After the USB module is set and tasks are registered in the usb_cstd_main_task function, the device
returns to the static state.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 61 of 157
Apr 1, 2013

Figure 4-1 shows the general flow of the initialization routine from reset state to static state.

Reset

PowerON_Reset_PC

usb_cstd_main_task

PowerON_Reset_PC

MCU initialization

Scheduler initialization

End

usb_cstd_main_task

usb_cstd_task_start

MCU initialization

USB module interrupt
 initialization

DMA module interrupt
 initialization

Evaluation board
circumference function

settings

End

End

usb_cstd_task_start

PDCD registration

USB module start

USB module operational
mode setup

PCD is registered into a
scheduler

PDCD is registered into a
scheduler

APL is registered into a
scheduler

usb_apl_task_switch
（Stationary state）

End

Figure 4-1 Peripheral Sample Program Intialization Overview

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 62 of 157
Apr 1, 2013

2. Main task

After initialization, the sample program calls the usb_apl_task_switch function and the device returns to the “static state”.
With the sample program is in the static state, enumeration and USB operation is triggered via interrupts.

3. Static state operations:

・ Check for processing requests with scheduler.
・ If any processing requests are present, select the task with highest priority and set its task processing request flag.
・ If a task processing request flag is set, confirm the message and process the task specified in the message

Figure 4-2 shows the program flow in the static state.

usb_apl_task_switch

R_usb_cstd_Scheduler

Yes

task processing
request flag set?

R_usb_pstd_PcdTask

R_usb_pvendor_task

usb_pvendor_apl_task

No

Figure 4-2 Static State Program Flow

4. Sample Application Task (APL) - usb_pvendor_apl_task()

The sample application task performs open processing and issues data transmit/receive requests to the sample vendor
driver as described below for the ANSI-type configuration.

(1). Open Processing

Checks if USB communication with USB host is enabled. If enabled, obtains file number.

(2). Issue data transmit/receive requests to the sample vendor driver (PDCD below).

After open processing is complete, the sample application task uses the file number obtained in the open
processing to transmit/receive data to/from the sample driver.

5. Sample Vendor Class Driver Task (PDCD) - usb_pvendor_task()

The sample vendor driver task (PDCD) notifies PCD of data transmit/receive requests from the sample application task
and performs the data transmit/receive operation.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 63 of 157
Apr 1, 2013

4.9 How to run USB-BASIC-FW in peripheral mode
This section describes how to operate the USB-BASIC-F/W as a peripheral, using USB-BASIC-FW and sample code as
an example.

4.9.1 Device selection
Table 4-10 lists the main device hardware resources included in USB-BASIC-FW..

Change the folder name of the device to be operated from “HwResourceForUSB_device name” to “HwResourceForUSB.

Table 4-10 Hardware resource for Sample code

Folder Name Device Evaluation Board
HwResourceForUSB_RX62N RX62N Renesas Starter Kit+ for RX62N
HwResourceForUSB_RX630 RX630 Renesas Starter Kit for RX630
HwResourceForUSB_RX63N RX63N Renesas Starter Kit+ for RX63N
HwResourceForUSB_RX63T RX63T Renesas Starter Kit+ for RX63N
HwResourceForUSB_RX62N_597assp R8A66597

R8A66593
Renesas Starter Kit+ for RX62N +
R0K866597D020BR

4.9.2 User Configuration File - r_usb_usrconfig.h
The USB-BASIC-F/W functions are set by rewriting the user definition configuration file (r_usb_usrconfig.h) in the
HwResourceForUSB folder. Please change the following items.

The following shows each definition item in the User Configuration file (r_usb_usrconfig.h).

1. ANSI / non-ANSI interface

The ANSI preprocessor directive may be set to one of the following two options.

#define USB_ANSIIO_PP USB_ANSIIO_USE_PP ：Use ANSI Interface
 : Recommended for new projects
#define USB_ANSIIO_PP USB_ANSIIO_NOT_USE_PP ：Non-ANSI Interface (legacy)

2. USB mode per port (host / peripheral)

Please select one USB mode (Host or Peripheral) for each USB module (USB IP0 and USB IP1).

Note: RX63T, RX630, R8A66597 and R8A66593 can only be set as USB_FUNCSEL_USBIP0_PP.

#define USB_FUNCSEL_USBIP0_PP USB_HOST_PP ：Host mode for USB IP0
#define USB_FUNCSEL_USBIP0_PP USB_PERI_PP ：Peripheral mode for USB IP0
#define USB_FUNCSEL_USBIP0_PP USB_NOUSE_PP ：USBIP0 Not used
#define USB_FUNCSEL_USBIP1_PP USB_HOST_PP ：Host mode for USB IP1
#define USB_FUNCSEL_USBIP1_PP USB_PERI_PP ：Peripheral mode for USB IP1
#define USB_FUNCSEL_USBIP1_PP USB_NOUSE_PP ：USBIP1 not used

3. USB ports

The USB port may be specified as one of the following two options.

#define USB_PORTSEL_PP USB_1PORT_PP ：Use one USB port
4. CPU byte endian

The CPU byte endian may be specified as one of the following two options.

#define USB_CPUBYTE_PP USB_BYTE_LITTLE_PP ：Little Endian
#define USB_CPUBYTE_PP USB_BYTE_BIG_PP ：Big Endian

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 64 of 157
Apr 1, 2013

5. Low power mode

The low power mode may be specified as one of the following two options.

#define USB_CPU_LPW_PP USB_LPWR_USE_PP //Low Power Mode
#define USB_CPU_LPW_PP USB_LPWR_NOT_USE_PP //Not Low Power Mode

6. External bus operating voltage
The external bus operating voltage may be specified as one of the following two options.
(Used only by R8A66597/R8A66593)

#define USB_LDRVSEL USB_VIF1 ：1.8 V applied to external bus pins
#define USB_LDRVSEL USB_VIF3 ：3.3 V external bus pins

7. Resonator oscillation frequency

Oscillating frequency of connected resonator may be specified as one of the following three options.
(Used only by R8A66597/R8A66593)

#define USB_XINSEL USB_XTAL12 ：12 MHz resonator connected
#define USB_XINSEL USB_XTAL24 ：24 MHz resonator connected
#define USB_XINSEL USB_XTAL48 ：48 MHz resonator connected

8. Transfer speed

The target speed may be specified as either of the following two options.
(Used only by R8A66597/R8A66593)

#define USB_HSESEL USB_HS_ENABLE ：Use High-Speed
#define USB_HSESEL USB_HS_DISABLE ：Use Full-Speed

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 65 of 157
Apr 1, 2013

4.9.3 Valid configurations listed by device
The user system definition information for each device is shown below.

Table 4-11 Valid RX62N user configuration options

Setting Item Definition Name Setting Value Remarks

1 ANSI Interface USB_ANSIIO_PP
USB_ANSIIO_USE_PP
USB_ANSIIO_NOT_USE_PP

USB0 mode USB_FUNCSEL_USBIP0_PP
USB_HOST_PP
USB_PERI_PP
USB_NOUSE_PP

Note

2

USB1monde USB_FUNCSEL_USBIP1_PP
USB_HOST_PP
USB_PERI_PP
USB_NOUSE_PP

Note

4 CPU Byte Endian USB_CPUBYTE_PP
USB_BYTE_LITTLE_PP
USB_BYTE_BIG_PP

5 Low Power Mode USB_CPU_LPW_PP
USB_LPWR_USE_PP
USB_LPWR_NOT_USE_PP

Table 4-12 Valid RX630 user configuration options

Setting Item Definition Name Setting Value Remarks

1 ANSI Interface USB_ANSIIO_PP
USB_ANSIIO_USE_PP
USB_ANSIIO_NOT_USE_PP

4 CPU Byte Endian USB_CPUBYTE_PP
USB_BYTE_LITTLE_PP
USB_BYTE_BIG_PP

5 Low Power Mode USB_CPU_LPW_PP
USB_LPWR_USE_PP
USB_LPWR_NOT_USE_PP

Table 4-13 Valid RX63N user configuration options

Setting Item Definition Name Setting Value Remarks

1 ANSI Interface USB_ANSIIO_PP
USB_ANSIIO_USE_PP
USB_ANSIIO_NOT_USE_PP

USB0 mode USB_FUNCSEL_USBIP0_PP
USB_HOST_PP
USB_PERI_PP
USB_NOUSE_PP

（Note）

2

USB1 mode USB_FUNCSEL_USBIP1_PP
USB_PERI_PP
USB_NOUSE_PP

（Note）

4 CPU Byte Endian USB_CPUBYTE_PP
USB_BYTE_LITTLE_PP
USB_BYTE_BIG_PP

5 Low Power Mode USB_CPU_LPW_PP
USB_LPWR_USE_PP
USB_LPWR_NOT_USE_PP

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 66 of 157
Apr 1, 2013

Table 4-14 Valid RX63T user configuration options

Setting Item Definition Name Setting Value Remarks

1 ANSI Interface USB_ANSIIO_PP
USB_ANSIIO_USE_PP
USB_ANSIIO_NOT_USE_PP

2 USB0 mode USB_FUNCSEL_USBIP0_PP USB_PERI_PP （Note）

4 CPU Byte Endian USB_CPUBYTE_PP
USB_BYTE_LITTLE_PP
USB_BYTE_BIG_PP

5 Low Power Mode USB_CPU_LPW_PP
USB_LPWR_USE_PP
USB_LPWR_NOT_USE_PP

Table 4-15 Valid R8A66597/R8A66953 user configuration options

Setting Item Definition Name Setting Value Remarks

1 ANSI Interface USB_ANSIIO_PP
USB_ANSIIO_USE_PP
USB_ANSIIO_NOT_USE_PP

2 USB0 mode USB_FUNCSEL_USBIP0_PP USB_PERI_PP （注）
3 USB Port USB_PORTSEL_PP USB_1PORT_PP

4 CPU Byte Endian USB_CPUBYTE_PP
USB_BYTE_LITTLE_PP
USB_BYTE_BIG_PP

5 Low Power Mode USB_CPU_LPW_PP
USB_LPWR_USE_PP
USB_LPWR_NOT_USE_PP

6 Low External Bus Operating
Voltage

USB_LDRVSEL
USB_VIF1
USB_VIF3

7 Oscillating Frequency of
Connected

USB_XINSEL
USB_XTAL12
USB_XTAL24
USB_XTAL48

8 Transfer Speed USB_HSESEL
USB_HS_ENABLE
USB_HS_DISABLE

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 67 of 157
Apr 1, 2013

4.9.4 Workspace build configuration
USB-BASIC-F/W operation can easily be changed by selecting a different Build Configuration in HEW. Table 4-16
shows operation per respective build configuration.

Table 4-16 Build Configuration

Build Configuration Contents of Configuration
PERI Operate one port as peripheral.
PERI_HOST Operate both ports; one as peripheral and one as host.

The configurations that can be selected differ according to device. Table 4-17 shows each device and valid configurations.

Table 4-17 Valid device and Build Configuration combinations.

Build Configuration Device
PERI HOST PERI_HOST

RX62N O O O
RX630 O -- --
RX63N O O O
RX63T O O --
R8A66593 O -- --
R8A66597 O O --

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 68 of 157
Apr 1, 2013

4.9.5 Peripheral mode example
The following uses RX62N in an example to show how to setup USB-BASIC-FW and sample program to operate as a
USB peripheral.

1. Select HwResourceForUSB

Delete the content of folder "HwResourceForUSB”. Copy and paste the content of "HwResourceForUSB_RX62N" into
"HwResourceForUSB". The folders named HwResourceForUSB_XXX are not used by any build configuration.

2. Select USB mode (Host/Peripheral)

Set macros USB_FUNCSEL_USBIP0_PP and USB_FUNCSEL_USBIP1_PP in the User Configuration file
(r_usb_usrconfig.h) as follows.

//#define USB_FUNCSEL_USBIP0_PP USB_HOST_PP // Host Mode

#define USB_FUNCSEL_USBIP0_PP USB_PERI_PP // Peripheral Mode

//#define USB_FUNCSEL_USBIP0_PP USB_NOUSE_PP

//#define USB_FUNCSEL_USBIP1_PP USB_HOST_PP // Host Mode

//#define USB_FUNCSEL_USBIP1_PP USB_PERI_PP // Peripheral Mode

#define USB_FUNCSEL_USBIP1_PP USB_NOUSE_PP

3. Workspace

Double click “Fw.hws” to start up HEW. Then set the build configuration in the workspace to “PERI”.

4. Generate an executable file

From the tabs at the top of the workspace, select [Build Build all], then execute the build.

5. Connect to evaluation board

From the tabs at the top of the workspace, select [Debug Connect], and then connect the evaluation board to the
emulator.

6. Download and execute the binary executable in the target

From the tabs at the top of the workspace, select [Debug Download (target execute file)], and then download the
binary executable file to the evaluation board.

From the tabs at the top of the workspace, select [Debug Reset then execute], to run target board.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 69 of 157
Apr 1, 2013

5. Host

5.1 Host Control Driver (HCD)
HCD is a program for controlling the hardware. The functions of HCD are shown below.

1. Control transfer (Control Read, Control Write, No-data Control) and result notification.
2. Data transfer (bulk, interrupt) and result notification.
3. Data transfer suspension (all pipes).
4. USB communication error detection and automatic transfer retry
5. USB bus reset signal transmission and reset handshake result notification.
6. Suspend signal and resume signal transmission.
7. Attach/detach detection using ATCH and DTCH interrupts.
8. Hardware control when entering and returning from the clock stopped (low-power sleep mode) state.
 (Only R8A66597)

5.1.1 Issuing Requests to HCD
The API functions described below are used by a higher level task (the HDCD or APL) to issue hardware control
requests to HCD. Only HCD may directly control the hardware. For requests to update the state of the connected devices
(Powered, Address, Configured state etc), control may be exercised by HCD either directly or via a USB hub. MGR
determines the device address and issues control requests to the HCD and HUBCD tasks.

In response to a request from upper layer task, HCD sends a result notification by means of a call-back function.

The following points must be considered when using HCD to perform USB communication.

1. Bus possession rate and pipe contention

HCD can perform communication with multiple devices. However, HCD does not calculate the USB bus possession rate
or check for contention between the communication pipes used by HDCD tasks.

When multiple HDCD devices are installed, modifications must be made to prevent contention between pipes. Also note
that the HUBCD provided in the USB-BASIC-F/W uses pipe 9, which may affect operations when using HUBCD in the
user system.

2. Installation of multiple HDCD (class drivers)

Two or more devices and communication are possible using HCD, but MGR cannot proceed with enumeration of
multiple devices simultaneously. The application will have to keep track of the communication if several devices are
running. Enumeration of another device should be avoided until the enumeration of the previously connected device
finishes.

5.2 Host Manager (MGR)
MGR is a task that supplements the functions of HCD and HDCD. The functions of MGR are shown below.

1. Registration of HDCD.
2. State management for connected devices.
3. Enumeration of connected devices.
4. Searching for endpoint information from descriptors.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 70 of 157
Apr 1, 2013

5.2.1 USB Standard Requests
MGR enumerates connected devices. The USB standard requests issued by MGR are listed below. The descriptor
information obtained from a device is stored temporarily, and this information can be fetched by using the HCD API
function.

・ GET_DESCRIPTOR (Device Descriptor)
・ SET_ADDRESS
・ GET_DESCRIPTOR (Configuration Descriptor)
・ SET_CONFIGURATION

The BasicFW only covers these standard requests, which are always used at time of enumeration.

5.2.2 Checking of HDCD
MGR notifies HDCD of the information obtained during enumeration by using the GET_DESCRIPTOR request and
checks whether the connected device is ready to operate.

HDCD replies device condition by R_usb_hstd_ReturnEnuMGR() function.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 71 of 157
Apr 1, 2013

5.3 API (Application Programming Interface)
5.3.1 ANSI API
The ANSI API provides an ANSI-type interface for applications enabling the use of the same API for applications of
different classes.

This ANSI interface is made up of its API functions. USB-BASIC-F/W provides 5 API functions: open(), close(), read(),
write(), and control().

The user is discouraged from changing these functions. A list of ANSI API Functions are shown in Table 5.1.

Table 5.1 List of ANSI API Functions

Function Name Description
open() Establish connection with USB device.
close() End connection with USB device.
read() Execute USB receive process *
write() Execute USB send process *
control() Execute process according to control code
 *Transmission and reception of data are requested by user. When done, the user is notified when the API calls
the user-registered call-back function.

[Note]

HDCD cannot be registered using the ANSI IO API. Use the driver registration API
(R_usb_hstd_DriverRegistration()) to register the HDCD.

5.3.2 General operation using ANSI API
To use the ANSI API, here is the general order of how to set up USB transfers.

1. Call open, with the relevant class number for your system.

2. After a successful open, call control to register the call-back functions that will be called by the Basic FW when
the application later uses the read and write APIs.

3. These application read and write calls will each cause the Basic FW to trigger the respective callbacks for the
transfer types registered by the control call(s), that is, there will be one call for each transfer type and direction.

4. Later, when for example a bulk OUT transfer has been completed, the registered user callback will trigger.

5. When your callback is triggered, take care of the incoming data - or for outgoing data do relevant processing for
successfully sent user data.

6. It is important to determine how many bytes have been sent or received in the user application data arrays. For
the Basic FW’s “vendor class” this application data is in the data arrays usb_gvendor_smpl_bi_data[][],
usb_gvendor_smpl_bo_data[][], usb_gvendor_smpl_ii_data[][], and usb_gvendor_smpl_io_data[][], depending
on which transfer type was used for the pipe (endpoint). Use the control API with the
USB_CTL_RD_LENGTH_GET or USB_CTL_WR_LENGTH_GET parameter. The user data in these data
transfer arrays beyond the length returned by the control call is not to be used . Such data is old (from previous
transfer).

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 72 of 157
Apr 1, 2013

open

Establish connection with USB device

Format

int16_t open (int8_t *name, uint16_t mode, uint16_t flg)

Argument

*name Class code : USB_CLASS_HSTD_BULK / USB_CLASS_HSTD_INT

mode Mode (Not used, set to 0)

flg Flag (Not used, set to 0)

Return Value

－ File number (Success: 0x10 -- 0x1F /Failure: -1)

As the File Number is required for subsequent communication using read() and write(), the
open() function must be called first.

Description

This function secures a hardware pipe for the class specified in the argument, and establishes connection with the
USB peripheral. If a connection is successful, the function sends the file number (0x10～0x1f) as the return value; if
the connection fails, it returns (-1). USB device class communications using read() and write() can be executed after
obtaining the file number.

Since HCD does the actual data transfer, the user can request data transfers only by using these functions.

Subsequent read() and write() will only cause data transfer to occur via the pipe registered into the opened “file”.

The following vendor example “class codes” are supported by USB-BASIC-FW.

Class Class code Note
VENDOR USB_CLASS_HSTD_BULK USB_CLASS_PSTD_BULK is an example class that

only has (two) bulk type endpoints
VENDOR USB_CLASS_HSTD_INT USB_CLASS_PSTD_INT is an example class which

only has (two) interrupt endpoints.
Note

1. Call this function from the user application.

2. As the file number is required for USB device class communications using read() or write(), the open
function must be called before performing the communication.

Example

int16_t usb_smp_fn;
void usb_apl_task()
{
 ：
 usb_smp_fn = open((int8_t *)USB_CLASS_HSTD_BULK, 0, 0);

 if(usb_smp_fn != -1)
 {
 /* USB Transfer */
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 73 of 157
Apr 1, 2013

close

End connection with USB device

Format

int16_t close (int16_t fileno)

Argument

fileno File number

Return Value

－ Error code

Description

This function ends the USB device class communication specified by the file number.

If the USB device class communication ends successfully, the function sends (0) as the return value. If the
communication fails, it returns (-1).

Note

1. Call this function from the user application.

Example

 int16_t usb_smp_fn;
 void usb_apl_task()
 {
 USB_ER_t err;
 ：
 err = close(usb_smp_fn);
 if(err == USB_OK)
 {
 usb_smp_fn = -1;
 }
 ：
 }

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 74 of 157
Apr 1, 2013

read

USB receive process

Format

int32_t read(int16_t fileno, uint8_t *buf, int32_t count)

Argument

fileno File number

*buf Pointer to data buffer

count Data Transfer size

Return Value

－ Error code

Description

This function executes a data receive transaction request for the USB device class specified by the file number.

Data is read from the FIFO buffer of the specified data transfer size (3rd argument), and then stored in the data
buffer (2nd argument).

When the receive process is complete, the call-back function is called. This call-back function is registered by the
Control API. Please refer to control code USB_CTL_RD_NOTIFY_SET in the Control API.

The actual read size can be obtained by using control API after the receive process is complete. Please refer to
control code USB_CTL_RD_LENGTH_GET in the Control API.

Note

1. Call this function from the user application.

2. Use control(USB_CTL_RD_NOTIFY_SET) to register the call-back function for notification of data transfer
completion before calling this function .

3. This function only executes a data receive request and does not block any processes. Therefore the return
value is always (-1).

Example

int16_t usb_smp_fn;
void usb_apl_task()
{
 ：
 /* Set data receive complete notification call-back */
 control(usb_smp_fn, USB_CTL_RD_NOTIFY_SET, (void*)&usb_ smp_Read_Notify);
 /* receiving data request */
 read(usb_smp_fn, (uint8_t *)buf, (uint32_t)size)
 /* receiving request status check */
 err = control(usb_spvendor_bulk_fn, USB_CTL_GET_READ_STATE, (void*)&state);
 if(err != USB_CTL_ERR_PROCESS_COMPLETE)
 {
 /* Error Processing */
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 75 of 157
Apr 1, 2013

Processing at the time of the completion of reception
void usb_smp_Read_Notify(USB_UTR_t *ptr, uint16_t data1, uint16_t data2)
{
 ：
 /* Receiving data length check */
 err = control(usb_spvendor_bulk_fn, USB_CTL_RD_LENGTH_GET, (void*)&data_len);
 if(err != USB_CTL_ERR_PROCESS_COMPLETE)
 {
 /* Error Processing */
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 76 of 157
Apr 1, 2013

write

USB send process

Format

int32_t write(int16_t fileno, uint8_t *buf, int32_t count)

Argument

fileno File number

*buf Pointer to data buffer

count Data Transfer size

Return Value

－ Error code

Description

This function executes a data transmit request for the USB device class specified in the file number. The data
transmit function writes data to the FIFO buffer in the specified data transfer size (3rd argument). The data to be
written is read from the data buffer (2nd argument).

When the transmit processing is complete, the call-back function is called. This call-back function is registered by
the Control API. Please refer to control code USB_CTL_WR_NOTIFY_SET in the Control API.

The actual write size can be obtained by using control API after the send processing is complete. Please refer to
control code USB_CTL_WR_LENGTH_GET in the Control API.

Note

1. Call this function from the user application.

2. After the file number is received, USB device class communications using this function can be performed.
The file number is obtained by using open API. Please refer to the Open API.

3. Use the Control API to register the call-back function for notification of data transfer completion before
calling this function.

4. This function only executes a data transmit request and no processing can be blocked while the data transmit
is processing. Therefore, the return value is always (-1).

Example

int16_t usb_smp_fn;
void usb_apl_task()
{
 ：
 /* Set data send complete notification call-back */
 control(usb_smp_fn, USB_CTL_WR_NOTIFY_SET, (void*)&usb_ smp_write_Notify);
 /* Send data request */
 write(usb_smp_fn, (uint8_t *)buf, (uint32_t)size)
 /* Send data length check */
 err = control(usb_spvendor_bulk_fn, USB_CTL_GET_WRITE_STATE, (void*)&state);
 if(err != USB_CTL_ERR_PROCESS_COMPLETE)
 {
 /* Error Processing */
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 77 of 157
Apr 1, 2013

Processing at the time of the completion of transmitting
void usb_smp_write_Notify(USB_UTR_t *ptr, uint16_t data1, uint16_t data2)
{
 ：
 /* Send data length check */
 err = control(usb_spvendor_bulk_fn, USB_CTL_WR_LENGTH_GET, (void*)&data_len);
 if(err != USB_CTL_ERR_PROCESS_COMPLETE)
 {
 /* Error Processing */
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 78 of 157
Apr 1, 2013

control

Process according to control code

Format

int16_t control(int16_t fileno, USB_CTRLCODE_t code, void *data)

Argument

fileno File number

code Control Code

*data Pointer to data

Return Value

－ Error code

Description

This function performs processes according to the control code. If an unsupported control code is specified, the
function sends (-1) as the return value.

The following are control codes supported by control().

Control Code Description
USB_CTL_USBIP_NUM Gets the USB module number.
USB_CTL_RD_NOTIFY_SET Registers the function to be called back when

the data receive is completed. Set the call-back
function in the 3rd argument.

USB_CTL_WR_NOTIFY_SET Registers the function to be called back when
the data send is completed. Set the call-back
function in the 3rd argument.

USB_CTL_RD_LENGTH_GET Gets the data length read from the FIFO buffer
when data is read.

USB_CTL_WR_LENGTH_GET Gets the data length written to the FIFO buffer
when data is sent.

USB_CTL_GET_RD_STATE Gets the state when data is read.
USB_CTL_GET_WR_STATE Gets the state when data is sent.
USB_CTL_H_RD_TRANSFER_END Forcibly ends data transfer in pipe specified in

argument.
USB_CTL_H_WR_TRANSFER_END Forcibly ends data transfer in pipe specified in

argument.
USB_CTL_H_CHG_DEVICE_STATE Changes state of connected USB device.
USB_CTL_H_GET_DEVICE_INFO Gets state of connected USB device.

Note

Call this function from the user application.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 79 of 157
Apr 1, 2013

Example

＜USB_CTL_USBIP_NUM＞
int16_t usb_smp_fn;
void usb_apl_task(USB_UTR_t *ptr)
{
 int16_t num;
 ：
 /* Confirmation USBIP Number */
 control(usb_smp_fn, USB_CTL_USBIP_NUM, (void*) &num);
 ：
}

＜USB_CTL_H_RD_TRANSFER_END＞
int16_t usb_smp_fn;
void usb_apl_task(USB_UTR_t *ptr)
{
 USB_CTL_PARAMETER_t smp_parameter;
 ：
 smp_parameter.transfer_end.status = USB_DATA_STOP;
 /* Forcibly ends data reception */
 control(usb_smp_fn, USB_CTL_H_RD_TRANSFER_END, (void)&smp_parameter);
 ：
}

＜USB_CTL_H_WR_TRANSFER_END＞
int16_t usb_smp_fn;
void usb_apl_task(USB_UTR_t *ptr)
{
 USB_CTL_PARAMETER_t smp_parameter;
 ：
 smp_parameter.transfer_end.status = USB_DATA_STOP;
 /* Forcibly ends data transmission */
 control(usb_smp_fn, USB_CTL_H_WR_TRANSFER_END, (void)&smp_parameter);
 ：
}

＜USB_CTL_H_CHG_DEVICE_STATE＞
int16_t usb_smp_fn;
void usb_apl_task(USB_UTR_t *ptr)
{
 USB_CTL_PARAMETER_t smp_parameter;
 ：
 smp_parameter.dev_info.complete = ptr.complete; /* Callback function */
 smp_parameter.dev_info.msginfo = USB_DO_STALL;
 /* Changing USB device information */
 control(usb_smp_fn, USB_CTL_H_CHG_DEVICE_STATE, (void)&smp_parameter);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 80 of 157
Apr 1, 2013

＜USB_CTL_H_GET_DEVICE_INFO＞
int16_t usb_smp_fn;
void usb_apl_task(USB_UTR_t *ptr)
{
 USB_CTL_PARAMETER_t smp_parameter;
 ：
 smp_parameter.device_information.tbl = &smp_tbl;
 /* Getting USB device information */
 control(usb_smp_fn, USB_CTL_H_GET_DEVICE_INFO, (void)&smp_parameter);
 ：
}

＜USB_CTL_RD_NOTIFY_SET＞
＜USB_CTL_GET_RD_STATE＞
＜USB_CTL_RD_LENGTH_GET＞
 Please refer to example of "read" function.

＜USB_CTL_WR_NOTIFY_SET＞
＜USB_CTL_GET_WR_STATE＞
＜USB_CTL_WR_LENGTH_GET＞
 Please refer to example of "write" function.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 81 of 157
Apr 1, 2013

5.3.3 HCD API
A HDCD module will implement hardware control requests by using the following HCD API. The return values of each
API function are scheduler macro error codes. A list of HCD API functions is shown in Table 5.2. Any of the functions
can be used with the non-ANSI interface. When compiling “with ANSI”, the first part of the table should not be used in
the user application.

Table 5.2 List of HCD API Functions

 Function Name Description
R_usb_hstd_TransferStart() Data transfer request
R_usb_hstd_TransferEnd() Data transfer forced end request
R_usb_hstd_ChangeDeviceState() USB device state change request

N
on

-A
N

S
I

R_usb_hstd_MgrChangeDeviceState() Connected device state change request
R_usb_hstd_SetPipeRegistration() Pipe configuration setting request
R_usb_hstd_HcdTask() HCD Task
R_usb_hstd_MgrTask() MGR Task
R_usb_hstd_DriverRegistration() Register HDCD
R_usb_hstd_DriverRelease() Release HDCD
R_usb_hstd_SetPipeInfo() Set of pipes information
R_usb_hstd_DeviceInformation() Fetch the state of a connected peripheral
R_usb_hstd_ChkPipeInfo Create pipe information from endpoint descriptor
R_usb_hstd_ReturnEnuMGR() Enumeration continuation request (non-OS only)
R_usb_hstd_EnuWait() Enumeration priority update request (non-OS only)
R_usb_cstd_GetUsbIpAdr() Get USB register base address
R_usb_cstd_UsbIpInit() Initialize USB module
R_usb_cstd_ClearHwFunction() USB-Related Register Initialization Request
R_usb_cstd_SetRegDvstctr0() Set the value to DVSTCTR0 register
R_usb_cstd_SetRegPipeCtr() Set the value of PIPExCTR register
R_usb_hstd_HcdOpen() Start HCD Task
R_usb_hstd_HcdClose() End HCD Task
R_usb_hstd_MgrOpen() Start MGR Task

A
N

S
I &

 N
on

-A
N

S
I

R_usb_hstd_MgrClose() End MGR Task

[Note]

1. If the user selects USB_ANSIIO_USE_PP in the r_usb_usrconfig.h file, the user should not call the functions
described in Non-ANSI field above in the user application.

Example (r_usb_usrconfig.h)

#define USB_ANSIIO_PP USB_ANSIIO_USE_PP ：ANSI I/F used

2. The user can always call the functions in the "ANSI & Non-ANSI" field . These functions are not related to
ANSI setting.

The ANSI-type interface described previously is recommended for new projects. Please refer to "4.9.2 User
Configuration File - r_usb_usrconfig.h" about selecting “ANSI Interface".

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 82 of 157
Apr 1, 2013

R_usb_hstd_TransferStart

Data transfer request

Format

USB_ER_t R_usb_hstd_TransferStart (USB_UTR_t *ptr)

Argument

*ptr Pointer to USB transfer structure

Return Value

[non-OS]

USB_E_OK Success

USB_E_ERROR Failure

[RTOS]

－ Error code. Please refer to RI600/4 User's manual for RX family Real-time OS.

Description

This function requests HCD to execute data transfer(s) for the pipe specified in the Transfer Structure.

When the data transfer ends (specified data size reached, short packet received, error occurred), the call-back
function is called. The information of the remaining transmit/receive data length, status, error count and transfer end
is set in the argument to this call-back function.

Note

1. This function is not necessary when using the ANSI IO API.

2. Set the following members of the USB Transfer Structure before calling this function; ip, ipp, pipe number,
transfer data start address, transfer data length, status, and the call-back function to call at end of transfer.

3. Call this function from the user application or class driver (HDCD).

4. When the received data is n times of the maximum packet size and less than the expected received data length,
it is considered that the data transfer is not ended and a callback is not generated

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 83 of 157
Apr 1, 2013

Example

USB_UTR_t usb_smp_trn_Msg[USB_NUM_USBIP][USB_MAXPIPE_NUM + 1];
USB_ER_t usb_smp_task(USB_UTR_t *ptr, uint16_t pipe, uint32_t size, uint8_t
*table)
{
 ：
 /* Transfer information setting */
 trn_msg[ptr->ip][pipe].msghead = (USB_MH_t)NULL; /* NULL only */
 trn_msg[ptr->ip][pipe].keyword = pipe; /* Pipe no. */
 trn_msg[ptr->ip][pipe].tranadr = table; /* Pointer to data buffer */
 trn_msg[ptr->ip][pipe].tranlen = size; /* Transfer size */
 trn_msg[ptr->ip][pipe].setup = 0;
 trn_msg[ptr->ip][pipe].complete = ptr->complete; /* Call-back function */
 trn_msg[ptr->ip][pipe].msghead = USB_TRAN_END; /* Status */
 trn_msg[ptr->ip][pipe].ipp = ptr->ipp; /* USB IP base address */
 trn_msg[ptr->ip][pipe].ip = ptr->ip; /* USB IP No */

 /* Data transfer request */
 err = R_usb_hstd_TransferStart((USB_UTR_t *)&trn_msg [ptr->ip][pipe]);

 return err;
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 84 of 157
Apr 1, 2013

R_usb_hstd_TransferEnd

Data transfer forced end request

Format

USB_ER_t R_usb_hstd_TransferEnd (USB_UTR_t *ptr, uint16_t pipe, uint16_t status)

Argument

*ptr Pointer to USB transfer structure

pipe Pipe number

status USB communication status

Return Value

［non-OS］

USB_E_OK Success

USB_E_ERROR Failure

［RTOS］

－ Error code. Please refer to RI600/4 User's manual for RX family Real-time OS.

Description

This function forces data transfer via the pipes to end.

This “forced end” request is sent to HCD which does the forced end request processing.

When a data transfer is forcibly ended, the function calls the call-back function that was set by
R_usb_pstd_TransferStart when the data transfer was requested. The remaining data length of transmission and
reception, status, the number of times of a transmission error, and the information on forced termination are set in the
argument (ptr) of this callback function.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure before calling the
function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. Call this function from the user application or the class driver (HDCD).

3. This function is not necessary when using the ANSI IO API.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 85 of 157
Apr 1, 2013

Example

void usb_smp_task(USB_UTR_t *ptr)
{
 uint16_t status;
 uint16_t pipe;
 ：
 pipe = USB_PIPEx
 status = USB_DATA_STOP

 /* Transfer end request */
 err = R_usb_hstd_TransferEnd(ptr, pipe, status);

 return err;
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 86 of 157
Apr 1, 2013

R_usb_hstd_SetPipeRegistration

Pipe configuration setting request

Format

USB_ER_t R_usb_hstd_SetPipeRegistration (USB_UTR_t *ptr, uint16_t *table, uint16_t pipe)

Argument

*ptr Pointer to USB transfer structure

*table Pointer to pipe information table

pipe Pipe number

Return Value

－ Error code. (USB_E_OK)

Description

This function configures the hardware pipes. Each pipe is set according to the contents of the pipe information
registered during HDCD registration.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure before calling the
function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. The user must call this function from the user’s application during initialization.

3. Refer to “5.9.2 Pipe Information Table” for more details.

4. This function is not necessary when using an ANSI IO API.

Example

USB_ER_t usb_smp_task(USB_UTR_t *ptr)
{
 ：
 R_usb_hstd_SetPipeRegistration(ptr, (uint16_t*)&usb_ smp_eptbl, USB_USEPIPE);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 87 of 157
Apr 1, 2013

R_usb_hstd_ChangeDeviceState

USB device state change request

Format

USB_ER_t R_usb_hstd_ChangeDeviceState (USB_UTR_t *ptr,
 USB_CB_t complete,
 uint16_t msginfo,
 uint16_t member)

Argument

*ptr Pointer to USB transfer structure

complete Call-back function

msginfo USB communication status

member Port number

Return Value

［non-OS］

USB_E_OK Success

USB_E_ERROR Failure

［RTOS］

－ Error code. Please refer to RI600/4 User's manual for RX family Real-time OS.

Description

This function changes the device state. Change of USB device state is done by HCD after calling this function.

The following is a list of values that may be used for msginfo.

msginfo Outline
USB_MSG_HCD_ATTACH Request to change to connection state
USB_MSG_HCD_DETACH Request to change to disconnection state from connection

state
USB_MSG_HCD_USBRESET Request to execute USB reset
USB_MSG_HCD_SUSPEND Request to change to suspend state
USB_MSG_HCD_RESUME Request to execute resume signal
USB_MSG_HCD_REMOTE Request to change to suspend with remote wakeup enabled

state
USB_MSG_HCD_VBON VBUS supply start request
USB_MSG_HCD_VBOFF VBUS shutdown request
USB_MSG_HCD_CLR_STALL Request to clear STALL

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure before calling the
function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. Call this function from the user application or class driver.

3. This function is not necessary when using an ANSI IO API.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 88 of 157
Apr 1, 2013

Example

void usb_smp_task(USB_UTR_t *ptr)
{
 ：
 /* Change state request */
 msginfo = USB_MSG_HCD_RESUME;
 err = R_usb_hstd_ChangeDeviceState(ptr, (USB_CB_t)change_cb, msginfo, port);
 if(err != USB_OK)
 {
 /* Error Processing */
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 89 of 157
Apr 1, 2013

R_usb_hstd_HcdOpen

Start HCD Task

Format

USB_ER_t R_usb_hstd_HcdOpen (USB_UTR_t *ptr)

Argument

*ptr Pointer to a USB Transfer Structure

Return Value

[non-OS]

USB_E_OK Success

[RTOS]

－ Error code. Please refer to RI600/4 User's manual for RX family Real-time OS.

Description

[non-OS]

This function initializes (clears) the host’s pipe information.

Return value is USB_E_OK at any time.

[RTOS]

After initializing the pipe information, the function starts the HCD task. The HCD task then waits for requests from
the hardware, HDCD or MGR.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure before calling the
function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. The user program should register the HDCD in the HCD and then call this function during initialization.

3. Do not call this function after starting the HCD task.

Example

USB_ER_t usb_smp_task(USB_UTR_t *ptr)
{
 USB_UTR_t *ptr;
 ：
 R_usb_hstd_HcdOpen(ptr);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 90 of 157
Apr 1, 2013

R_usb_hstd_HcdClose

End HCD Task

Format

USB_ER_t R_usb_hstd_HcdClose (void)

Argument

－ －

Return Value

[non-OS]

USB_E_OK Success

[RTOS]

－ Error code. Please refer to RI600/4 User's manual for RX family Real-time OS.

Description

[non-OS]

No processing.

Return value is always USB_E_OK at any time.

[RTOS]

Ending HCD task.

Note

1. Call this function from the user application or class driver (HDCD).

2. Please do not call this function after ending HCD task.

Example

void usb_smp_task()
{
 USB_UTR_t *ptr;
 ：
 R_usb_hstd_HcdClose(ptr);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 91 of 157
Apr 1, 2013

R_usb_hstd_HcdTask

HCD Task

Format

void R_usb_hstd_HcdTask (USB_VP_INT stacd)

Argument

stacd Task start code (Not used)

Return Value

－ －

Description

When host, call this function regularly so that the USB H/W IP is controlled continuously by HCD.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure before calling the
function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. Call this function in the loop that executes the scheduler processing for non-OS operations. See ”Figure 4-2 Static
State Program Flow” for usage example

Example

void usb_smp_mainloop(void)
{
 while(1)
 {
 /* Start non-OS scheduler */
 R_usb_cstd_Scheduler();
 /* Flag checking */
 if(USB_FLGSET == R_usb_cstd_CheckSchedule())
 {
 ：
 R_usb_hstd_HcdTask((USB_VP_INT)0);
 ：
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 92 of 157
Apr 1, 2013

R_usb_hstd_DriverRegistration

Register HDCD

Format

void R_usb_hstd_DriverRegistration (USB_UTR_t *ptr, USB_HCDREG_t *callback)

Argument

*ptr Pointer to USB transfer structure

*callback Pointer to class driver structure

Return Value

－ －

Description

This function registers the HDCD information, which is registered in the class driver structure, in the HCD.

It then updates the number of registered drivers controlled by HCD, and registers HDCD in a new area.

After registration is complete, the initialization call-back function is executed.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure before calling the
function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. The user must call this function from the user application during initialization.

3. Refer to Table 5.9 USB_HCDREG_t structure for details about registration information.

Example

void usb_smp_registration(USB_UTR_t *ptr)
{
 USB_HCDREG_t driver;
 ：
 (Register information of HDCD to driver)
 ：
 R_usb_hstd_DriverRegistration(ptr, &driver);
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 93 of 157
Apr 1, 2013

R_usb_hstd_SetPipeInfo

Copy pipe information to host pipe information table

Format

void R_usb_hstd_SetPipeInfo (uint16_t *ep_tbl, uint16_t *tmp_tbl, uint16_t length)

Argument

*ep_tbl Pointer to pipe information table (destination)

*tmp_tbl Pointer to pipe information table (source)

length Length of table

Return Value

－ －

Description

Pipe information table is copied from source (*tmp_tble) to destination (*ep_tbl).

Note

Call this function from the user application or class driver.

Example

void usb_smp_task(void)
{
 ：
 R_usb_hstd_SetPipeInfo(&def_eptbl[0], &smp_eptbl[offset], length);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 94 of 157
Apr 1, 2013

R_usb_hstd_DeviceInformation

Request device information for connected peripheral

Format

void R_usb_hstd_DeviceInformation (USB_UTR_t *ptr, uint16_t devaddr, uint16_t *tbl)

Argument

*ptr Pointer to USB transfer structure

devaddr Device address

*tbl Pointer to the table address where acquired device information is stored

Return Value

－ －

Description

Information about the peripheral connected to the USB port is acquired.

The following information is stored in a device information table is shown below.

 ［0］Root port number to which device is connected

 ［1］Device state

 ［2］Configuration number

 ［3］Interface class code 1

 ［4］Connection speed

 ［5］Number of interfaces used

 ［6］Interface class code 2

 ［7］Interface class code 3

 ［8］Status of rootport0

 ［9］Status of rootport1

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure before calling the
function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. Call this function from the user application or class driver.

3. If this API is called in the state of other than Configured state, set 0(zero) to the argument “devaddr”. When
specifying 0 to the device address, the following information is returned.

(1). When there is not a device during enumeration.
table[0] = USB_NOPORT, table[1] = USB_STS_DETACH

(2). When there is a device during enumeration.
table[0] = Port number, table[1] = USB_STS_DEFAULT

4. As USB-BASIC-FW does not support multiple interfaces, [5], [6] and [7] above are not used.

5. Use a 20-byte area for argument *tbl.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 95 of 157
Apr 1, 2013

Example

void usb_smp_task(void)
{
 ：
 /* Check device information */
 R_usb_hstd_DeviceInformation(ptr, devaddr, &tbl);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 96 of 157
Apr 1, 2013

R_usb_hstd_ChkPipeInfo

Setting the pipe information tabl

Format

uint16_t R_usb_hstd_ChkPipeInfo(uint16_t speed, uint16_t *EpTbl, uint8_t *Descriptor)

Argument

speed Device Speed

EpTbl Pipe Information Table

Descriptor Endpoint Descriptor

Return Value

USB_DIR_H_IN Set the IN endpoint.

USB_DIR_H_OUT Set the OPUT endpoint.

USB_ERROR Failure

Description

Analyze the endpoint descriptor and create the pipe information table for a pipe.

Fields where information is updated are as follows:

 USB_TYPFIELD USB_BULK .or. USB_INT
 USB_SHTNAKFIELD USB_SHTNAKON（USB_TYPFIELD == USB_DIR_H_IN）
 USB_DIRFIELD USB_DIR_H_IN .or. USB_DIR_H_OUT
 USB_EPNUMFIELD Endpoint number shown in the endpoint descriptor
 USB_IITVFIELD Interval counter (specified by 2 to the nth power)

Note

1. Refer to Chapter 5.9.2 for the pipe information table.

2. Set the interval counter by 2 to the nth.

3. Call this function after getting the configuration descriptor during the enumeration processing when using
ANSI,

4. Call this function from the callback function for the class check when using non-ANSI.

Example

void usb_hsmpl_pipe_info(uint8_t *table)
{
 usb_er_t retval = USB_YES;
 uint16_t *ptr;

 /* Check Endpoint Descriptor */
 ptr = g_usb_hsmpl_DefEpTbl;
 for (; table[1] == USB_DT_ENDPOINT, retval != USB_ERROR; table += table[0],
ptr += USB_EPL)
 {
 retval = R_usb_hstd_ChkPipeInfo(speed, &ptr, table);
 }
 return retval;
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 97 of 157
Apr 1, 2013

R_usb_hstd_ReturnEnuMGR

Enumeration continuation request (non-OS only)

Format

void R_usb_hstd_ReturnEnuMGR (USB_UTR_t *ptr, uint16_t cls_result)

Argument

*ptr Pointer to USB transfer structure

cls_result Class check result

Return Value

－ －

Description

The function transmits a message to MGR requesting continuation of enumeration processing. MGR analyzes the
argument of the function and determines whether or not to transition the connected peripheral device to the
configured state. Specify the class check result as the argument (cls_result).

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure before calling the
function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. This function is for non-OS operations only.

3. Please call at the time of class check processing.

Example

void usb_smp_task(void)
{
 ：
 (Enumeration processing)
 ：
 R_usb_hstd_ReturnEnuMGR(ptr, cls_result);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 98 of 157
Apr 1, 2013

R_usb_hstd_EnuWait

Enumeration priority update request (non-OS only)

Format

void R_usb_hstd_EnuWait (USB_UTR_t *ptr, uint8_t taskID)

Argument

*ptr Pointer to USB transfer structure

taskID Task ID

Return Value

－ －

Description

An Enumeration priority change request is made. It can be used to change the enumeration priority in cases where a
single piece of hardware has multiple USB ports and, during enumeration of one USB device, attachment of another
USB device is detected.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure before calling the
function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. This function is for non-OS operations only.

3. Please call at the time of class check processing.

Example

void usb_smp_task(void)
{
 ：
 R_usb_hstd_EnuWait(ptr, (uint8_t)USB_HSMP_TSK);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 99 of 157
Apr 1, 2013

R_usb_hstd_MgrChangeDeviceState

Connected device state change request

Format

USB_ER_t R_usb_hstd_MgrChangeDeviceState (USB_UTR_t *ptr,
 USB_CB_t complete,
 uint16_t msginfo,
 uint16_t devaddr)

Argument

*ptr Pointer to a USB Transfer Structure

complete Call-back function

msginfo Message information

devaddr Device address

Return Value

[non-OS]

USB_E_OK Success

USB_E_ERROR Failure

[RTOS]

－ Error code. Please refer to RI600/4 User's manual for RX family Real-time OS.

Description

Setting the following values in msginfo and calling this API will send a request to HCD or HUBCD to change the
state of the connected USB device.

msginfo Outline
USB_GO_POWEREDSTATE Request for transition from connected state to

disconnected state
USB_DO_RESET_AND_ENUMERATION Request for transition from connected state to

communication initialized connected state.
(issue USB reset and request enumeration execution)

USB_PORT_ENABLE VBUS supply start request
USB_PORT_DISABLE VBUS shutdown request
USB_DO_GLOBAL_SUSPEND Request for transition to suspended state with remote

wakeup enabled
USB_DO_GLOBAL_RESUME Global resume execution request (request transition

from suspend state to state preceding suspend)
USB_DO_SELECTIVE_RESUME Selective resume execution request (request transition

from suspend state to state preceding suspend)
Note

1. Besides above arguments, also set the following members of the USB Transfer Structure before calling the
function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. Call this function from the user application or class driver.

3. This function is not necessary when using an ANSI IO API.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 100 of 157
Apr 1, 2013

Example

void usb_smp_task(void)
{
 ：
 R_usb_hstd_MgrChangeDeviceState(ptr,(USB_CB_t)&usb_smp_callback,
 msginfo, devaddr);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 101 of 157
Apr 1, 2013

R_usb_hstd_MgrOpen

Start the MGR Task

Format

USB_ER_t R_usb_hstd_MgrOpen (USB_UTR_t *ptr)

Argument

*ptr Pointer to a USB Transfer Structure

Return Value

[non-OS]

USB_E_OK Success

[RTOS]

－ Error code. Please refer to RI600/4 User's manual for RX family Real-time OS.

Description

[non-OS]

The registration state of HDCD is initialized.

Return value is USB_E_OK at any time.

[RTOS]

After initializing the registration state of HDCD, the function starts the MGR task.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure before calling the
function.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. The user application should register the PDCD in the PCD and then call this function during initialization.

3. Do not call this function after starting the MGR task.

Example

void usb_smp_task()
{
 USB_UTR_t *ptr;
 ：
 R_usb_hstd_MgrOpen(ptr);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 102 of 157
Apr 1, 2013

R_usb_hstd_MgrClose

End MGR Task

Format

USB_ER_t R_usb_hstd_MgrClose(void)

Argument

*ptr Pointer to USB transfer structure

Return Value

－ －

Description

[non-OS]

No processing.

Return value is always USB_E_OK.

[RTOS]

Ending MGR task.

Note

1. Please call this function from the user application or class driver .

2. Please do not call this function after ending MGR task.

Example

void usb_smp_task()
{
 ：
 R_usb_hstd_MgrClose();
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 103 of 157
Apr 1, 2013

R_usb_hstd_MgrTask

MGR Task

Format

void R_usb_hstd_MgrTask (USB_VP_INT_t stcd)

Argument

stacd Task start code (Not used)

Return Value

－ －

Description

When host, call this function continuously to run the Manager (MGR) task. (HDCD sends messages to MGR which
in turn calls HCD.

Note

1. Call this in the loop that executes the scheduler processing for non-OS operations.

2. See ”Figure 4-2 Static State Program Flow” for a usage example

Example

void usb_smp_mainloop(void)
{
 while(1)
 {

 /* Start non-OS scheduler */
 R_usb_cstd_Scheduler();
 /* Flag checking */
 if(USB_FLGSET == R_usb_cstd_CheckSchedule())
 {
 ：
 R_usb_hstd_MgrTask((USB_VP_INT)0);
 ：
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 104 of 157
Apr 1, 2013

R_usb_cstd_GetUsbIpAdr

Get USB register base address

Format

void R_usb_cstd_GetUsbIpAdr (uint16_t usbip)

Argument

usbip USB IP number

Return Value

USB register base address

Description

Return USB register base address of specified USB IP .

Note

Call this function from the user application.

Example

void usb_smp_task(void)
{
 USB_UTR_t utr;
 :
 utr.ip = USB_HOST_USBIP_NUM;
 utr.ipp = R_usb_cstd_GetUsbIpAdr(USB_HOST_USBIP_NUM);
 :
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 105 of 157
Apr 1, 2013

R_usb_cstd_UsbIpInit

Initialize USB module

Format

void R_usb_cstd_UsbIpInit (USB_UTR_t *ptr)

Argument

*ptr Pointer to a USB Transfer Structure

Return Value

－

Description

Initialize specified USB IP module.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. The user must call this function from the user application during initialization.

Example

void usb_smp_init(void)
{
 ：
 USB_UTR_t utr;
 :
 utr.ip = USB_HOST_USBIP_NUM;
 utr.ipp = R_usb_cstd_GetUsbIpAdr(USB_HOST_USBIP_NUM);
 :
 R_usb_cstd_UsbIpInit(&utr);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 106 of 157
Apr 1, 2013

R_usb_cstd_ClearHwFunction

USB-Related Register Initialization

Format

void R_usb_cstd_ClearHwFunction(USB_UTR_t *ptr)

Argument

*ptr Pointer to a USB Transfer Structure

Return Value

－

Description

USB-Related Register Initialization Request

Note

Besides above arguments, also set the following members of the USB Transfer Structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 107 of 157
Apr 1, 2013

R_usb_cstd_SetRegDvstctr0

Set DVSTCTR0 register

Format

void R_usb_cstd_SetRegDvstctr0 (USB_UTR_t *ptr, uint16_t data)

Argument

*ptr Pointer to a USB Transfer Structure

data Setting value to register

Return Value

－ －

Description

Set the value of the second argument to the DVSTCTR0 register.
DVSTCTR0 controls the state of the USB data bus.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. Please call this function from the class driver (HDCD).

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 108 of 157
Apr 1, 2013

R_usb_cstd_SetRegPipeCtr

Set the value of PIPExCTR register

Format

void R_usb_cstd_SetRegPipeCtr(USB_UTR_t *ptr, uint16_t pipeno, uint16_t data)

Argument

*ptr Pointer to a USB Transfer Structure

pipeno Pipe number

data Setting value to register

Return Value

－ －

Description

Set the value of the third parameter to the PIPExCTR register, where ‘x’ is the specified pipe number (second
parameter).

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure.

 USB_REGADR_t ipp ：USB register base address
 uint16_t ip ：USB IP number

2. This function is used for OTG.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 109 of 157
Apr 1, 2013

5.4 Host call-back functions
5.4.1 HCD call-backs
Call-backs are used so that the user does not need to poll for events. The user application registers a callback in order to
be alerted when, for example, requests made to HCD are completed, and data is has been transferred over USB to the
peripheral. By using call-backs the application is propelled forward by the USB USB-BASIC-F/W stack.

Each table below is named after the function registering the call-back, and the table content explains the nature of the
“called-back” function.

Table 5.3 R_usb_hstd_TransferStart call-back

Name Data Transfer Request call-back function
Call format (*USB_CB_INFO_t)(USB_UTR_t*);
Arguments USB_UTR_t* USB_UTR_t pointer of argument of R_usb_hstd_TransferStart
Return values － － －
Description This function is executed at the end of a data transfer. This should occur when the number

of bytes specified by the TransferStart function are transmitted, or when a short packet is
received. Transmit/receive data length and the error count are updated. Check the result of
data communications.

Notes

Table 5.4 R_usb_hstd_ChangeDeviceState(USB_MSG_HCD_USBRESET) call-back

Name USB Bus Reset call-back function
Call format (*USB_CB_INFO_t)(USB_UTR_t*, uint16_t, uint16_t)

USB_UTR_t * Pointer to a USB Transfer Structure

uint16_t

USB_NOCONNECT: Not connected
USB_HSCONNECT: Hi-speed device
USB_FSCONNECT: Full-speed device
USB_LSCONNECT: Low-speed device

Arguments

uint16_t NOARGUMENT: Not used
Return values － － －
Description This function is executed at the end of USB bus reset processing.

The communication speed of the connected device is returned as an argument to the call-
back.
The response is “not connected” if disconnection is detected during USB bus reset
processing or if the speed is undefined.

Notes

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 110 of 157
Apr 1, 2013

Table 5.5 Other call-backs

Name Other Call back Functions
Call format (*USB_CB_INFO_t)(USB_UTR_t*,uint16_t, uint16_t)

USB_UTR_t * Pointer to a USB Transfer Structure
uint16_t NOARGUMENT: Not used

Arguments

uint16_t msginfo: Command category
Return values － － －
Description The following commands is set to the third argument

USB_MSG_HCD_ATTACH: Executed at end of attach processing.
USB_MSG_HCD_DETACH: Executed at end of detach processing.
USB_MSG_HCD_SUSPEND: Executed at end of suspend processing.
USB_MSG_HCD_RESUME: Executed at end of resume processing.
USB_MSG_HCD_REMOTE: Executed at end of remote wakeup processing.
USB_MSG_HCD_VBON: Executed at end of VBUS on processing.
USB_MSG_HCD_VBOFF: Executed at end of VBUS off processing.
USB_MSG_HCD_SETDEVICEINFO: Executed at end of pipe setting processing.
USB_MSG_HCD_CTRL_END: Executed at end of data transfer.
USB_MSG_HCD_CLRSEQBIT: Executed when sequence toggle bit is cleared.
USB_MSG_HCD_SETSEQBIT: Executed when sequence toggle bit is set.

Notes

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 111 of 157
Apr 1, 2013

5.4.2 MGR call-backs
Table 5.6 classcheck

Name Classcheck Call-back function
Call format (*USB_CB_CHECK_t)(USB_UTR_t*, uint16_t **);

USB_UTR_t * Pointer to a USB Transfer Structure Arguments
uint16_t **table table [0] device descriptor

table [1] configuration descriptor
table [2] interface descriptor
table [3] descriptor check result
table [4] hub type
table [5] port number
table [6] communication speed
table [7] device address

Return values － － －
Description HDCD is notified of descriptor information, etc., and HDCD returns a ready/not ready to

operate result. One of the following check results (table[3]) are returned.
USB_DONE: HDCD ready to operate
USB_ERROR: HDCD not ready to operate.
table[4] : HUB spec for HUB driver
 USB_FSHUB：Full-Speed HUB
 USB_HSHUBS：Hi-Speed HUB(Single)
 USB_HSHUBM：Hi-Speed HUB(Multi)
table[5]：Port number (R8A66597 only)
 USB_PORT0：Device connect to port0
 USB_PORT1：Device connect to port1
table[6]：Device speed (R8A66597 only)
 USB_HSCONNECT：Device is Hi-speed
 USB_FSCONNECT：Device is Full-speed
 USB_LSCONNECT：Device is Low-speed

Notes

Table 5.7 Other call-backs

Name Other call-back functions
Call format (*USB_CB_INFO_t)(uint16_t ,uint16_t);

USB_UTR_t * Pointer to a USB Transfer Structure
uint16_t NOARGUMENT: Not used

Arguments

uint16_t NOARGUMENT: Not used
Return values － － －
Description The function set to the following memer is called at the registration.

classinit: Executed at MGR startup.
devconfig: Executed when Set_Configuration request issued.
devdetach: Executed when a detach condition is detected.
devsuspend: Executed at transition to suspend state.
devresume: Executed at transition to resume state.
overcurrent: Executed when over current is detected.

Notes Refer to Table 5.9 USB_HCDREG_t structure members

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 112 of 157
Apr 1, 2013

5.5 Structure Definitions
The structures used in USB host mode are described below. They are defined in file usb_ctypedef.h.

5.5.1 USB_HCDINFO_t structure
The USB_HCDINFO_t structure is used when transferring messages to HCD.

Members of USB_HCDINFO_t Structure are shown in Table 5.8.

Table 5.8 Member of USB_HCDINFO_t Structure

Type Variable
Name

Description

USB_MH_t msghead This message header is used by the OS, so the client should not
make use of it.

uint16_t msginfo Is used by USB-BASIC-FW, so the client should not make use of it.
uint16_t keyword Register the sub-information (port number, pipe number, etc).
USB_REGADR_t ipp Register the base address of the USB IP
uint16_t ip Register the USB IP number (port nr)
USB_CB_t complete This specifies the address of the function to be executed when

HCD processing ends.
The call-back function should have a void (*USB_CB_INFO_t)
(uint16_t,uint16_t) type declaration. For USB reset signal output
control by the R_usb_hstd_ChangeDeviceState() function, the
reset handshake result is returned as the 1st argument of the call-
back.
For other functions, when call-back occurs, it means that
processing has ended.

5.5.2 USB_HCDREG_t structure
USB_HCDREG_t is a structure for registering the information on HDCD. The call-back registered into this
structure is called when the connected peripheral changes its device state.

Members of the USB_HCDREG_t structure are shown in Table 5.9.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 113 of 157
Apr 1, 2013

Table 5.9 USB_HCDREG_t structure members

Type Variable Name Description
uint16_t rootport Used by HCD. The connected port number is registered.
uint16_t devaddr Used by HCD. The device address is registered.
uint16_t devstate Used by HCD. The device connection state is registered.
uint16_t ifclass Register the interface class code for HDCD operation.
uint16_t *tpl Register the target peripheral list for HDCD operation.

(Please refit to "5.6 Target Peripheral List".)
uint16_t *pipetbl Register the address of the pipe information table.
USB_CB_INFO_t classinit Function to be called when the driver is registered.
USB_CB_CHECK_t classcheck Register the HDCD “class check” function to be called when a TPL

match occurs.
USB_CB_INFO_t devconfig Register the function to be started when transitioning to the

configured state.
It is called in the SET_CONFIGURATION request status stage.

USB_CB_INFO_t devdetach Register the function to be started when transitioning to the detach
state.

USB_CB_INFO_t devsuspend Register the function to be started when transitioning to the
suspend state.

USB_CB_INFO_t devresume Register the function to be started when transitioning to the
resume state.

USB_CB_INFO_t overcurrent Register the function started when overcurrent detection occurs.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 114 of 157
Apr 1, 2013

5.6 Target Peripheral List
USB-BASIC-FW needs to create a target peripheral list (TPL) for each device class.

Please register vendor ID and product ID by a set of the working USB device to TPL.

Please set this TPL to the member (tpl) in USB_HCDREG_t structure. (Please refer to "USB_HCDREG_t
Structure" in "5.5 Structure Definitions")

const uint16_t usb_gapl_devicetpl[] =
{
 2, /* Number of list */
 0, /* Reserved */
 0xXXXX, /* Vendor ID */
 0xXXXX, /* Product ID */
 0xYYYY, /* Vendor ID */
 0xYYYY, /* Product ID */
};

When all vendor IDs and product IDs in the device class are supported, do not specify specific vendor IDs and
product IDs. Instead, register USBC_NOVENDOR and USBC_NOPRODUCT as a set.

5.7 Host Control Transfer
The R_usb_hstd_TransferStart() function must be used to transmit not just standard requests 0, but also vendor or class
requests.

To use R_usb_hstd_TransferStart() to transmit the setup packet, first set the following in the USB_UTR_t structure
member, and then call R_usb_hstd_TransferStart().

・ Set PIPE0 in*keyword

・ Set USB_TRAN_END in *segment

・ Set setup data in *setup

For more on the USB_UTR_t structure, refer to “5.8.4 The USB Communication Structure (USB_UTR_t)”

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 115 of 157
Apr 1, 2013

The following is an example of a vendor request transmit.

USBC_UTR_t usb_gsmp_ControlSetupUtr;

USBC_ER_t usb_hsmp_VendorRequestProcess(void)
{
 USBC_ER_t err;

 /* Set Call-back function */
 usb_gsmp_ControlSetupUtr.complete = &usb_smp_VendorRequestResult;

 /* Transmission pipe setup */
 usb_gsmp_ControlSetupUtr.keyword = (uint16_t)USB_PIPE0;
 usb_gsmp_ControlSetupUtr.segment = (uint8_t)USBC_TRAN_END;
 /* Setup packet data */
 usb_gsmp_ControlSetupUtr.tranadr = (void*)usb_gsmp_VendorRequestData;
 /* Transfer size setup */
 usb_gsmp_ControlSetupUtr.tranlen = (uint32_t)usb_gsmp_tranlen;
 /* Setup command setup */
 usb_gsmp_ControlSetupUtr.setup =
(uint16_t*)&usb_gsmp_VendorRequest_Table;

 /* Data Request to Send */
 err = R_usb_hstd_TransferStart(&usb_gsmp_ControlSetupUtr);
 return err;
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 116 of 157
Apr 1, 2013

5.8 Data Transfer and Control Data Transfer
5.8.1 Data transfer request
When using the ANSI IO API interface, use read() or write() to start the data transfer request.

When not using the ANSI interface, use R_usb_pstd_TransferStart() to start the data transfer. For more details on the
API functions described here, please refer to the corresponding API section.

 [Note] Control transfer cannot use the ANSI interface. Please use R_usb_hstd_TransferStart(), when Control transfer is
performed.

5.8.2 Notice of a transmission result
When a data transfer completes, the firmware notifies the HDCD of the data transfer completion and the sequence toggle
bit information in the call-back function registered when the data transfer was requested.

The results of the transfer are stored in the USB_UTR_t structure member (status).

Below, a communication result is shown.

USB_CTRL_END : Control transfer normal end
USB_DATA_NONE : Data transmit normal end
USB_DATA_OK : Data receive normal end
USB_DATA_SHT : Data receive normal end with less than specified data length
USB_DATA_OVR : Receive data size exceeded
USB_DATA_ERR : No-response condition or over/under run error detected
USB_DATA_STALL : STALL response or MaxPacketSize error detected
USB_DATA_STOP : Data transfer forced end
USB_DATA_TMO : Forced end due to timeout, no call-back (RTOS only)

5.8.3 Data transfer retry
When a no-response condition occurs on a pipe, USB-BASIC-FW performs communication retries up to the user-
specified number of times. If the no-response condition continues through the end of the user-specified number of retries,
the notification USB_DATA_ERR is returned to HDCD.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 117 of 157
Apr 1, 2013

5.8.4 The USB Communication Structure (USB_UTR_t)
The structure used for Control and data transfer is described below. USB communications with the connected device are
enabled by notifying HCD of the following structure members.

Members of USB_UTR_t Structure are shown in Table 5.10.

Table 5.10 USB Communication Structure members
and description for use with host

Type Variable Name Description
USB_MH_t msghead The message header is used by the OS.

Not to be used by the application.
uint16_t msginfo Specifies the request content.

Specifies USB-BASIC-FW using an API function.
Specifies USB_MSG_HCD_SUBMITUTR for USB communication.

uint16_t keyword Please register sub information, including a port number, a pipe
number, etc.
A pipe number is specified when performing USB communication.

USB_REGADR_t ipp Register the address of USB IP.
uint16_t ip Register the number of USB IP.
uint16_t result Store the USB communication result.
USB_CB_t complete Callback function

Specifies the address of the function to be executed when USB
transfer ends. Use the following type declaration for the call-back
function.
typedef void (*USB_CB_t)(USB_UTR_t *);

void *tranadr Buffer address for transfer data; where to read data to send, or
where to write receive-data.

uint32_t tranlen Specifies nr of bytes to transfer when transmitting, and provides
information on nr bytes received when receiving. Specify a transfer
size smaller than the user buffer size.

uint16_t *setup Setup packet data.
Requests a setup packet for control transfer to HCD and provides
notification of the device address.
Only used for control transfer

uint16_t status USB communication status.
HCD returns the USB communication result.
Refer to "4.7.2 Notice of a transmission result."

uint16_t pipectr PIPEnCTR register.
HCD returns the PIPEnCTR register information for pipe n. When
using one pipe for two endpoints, specify the transfer toggle state
for the endpoint when continuing the communication.

uint8_t errcnt Stores the number of errors that occur during transfer.
uint8_t segment Segment information.

Provides notification of transfer continuation/end.
int16_t fn File number.

Sets file number when the ANSI IO API is used.
void *usr_data Sets each type of data.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 118 of 157
Apr 1, 2013

Additional Communication Structure details for host

1. Buffer address for USB communication (tranadr)

Reception or ControlRead transfer: Specifies the address of the buffer for storing receive data.
Transmission or ControlWrite transfer: Specifies the address of the buffer for storing transmit data.
NoDataControl transfer: Ignored if specified.

2. USB communication data length (tranlen)

Reception or ControlRead transfer: Stores the receive data length.
Transmission or ControlWrite transfer: Stores the transmit data length.
NoDataControl transfer: Set to 0.

The remaining transmit/receive data length is stored after USB communication end. In case of control transfer in host
mode, the remaining data length from the data stage is stored.

3. Setup packet data (setup)

For control transfers using R_usb_hstd_TransferStart(), the structure member (*setup) is a USB request data table stored
in the hardware registers listed below.

For *setup, specify the table address of the uint16_t[5] array.

Table 5.11 setup_packet array

Register Name Value
54H USBREQ bRequest bmRequestType
56H USBVAL wValue
58H USBINDX wIndex
5AH USBLENG wLength

-- USBADDR Device Address

4. Pipe control (pipectr)

An HDCD driver can communicate with multiple endpoint addresses over a single pipe by remembering the sequence
toggle bit. When specifying transfer continuation, set the SQMON bit in this register to the previous toggle state.

5. Segment information (pipectr)

Control transfer continuation: Specify USBC_TRAN_CONT (continuation of transfer from data stage enabled).
Control transfer end: Specify USBC_TRAN_END.
Data transfer continuation: Specify USBC_TRAN_CONT. (Set SQMON bit in PIPECTR.)
Data transfer end: Specify USBC_TRAN_END. During isochronous transfer no determination is made

 when pipe is in use.

5.8.5 Notes on Data Transfer
When the maximum packet size is an odd number and one packet is not equivalent to one transfer, the CPU may generate
an address exception during buffer access.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 119 of 157
Apr 1, 2013

5.8.6 Notes on Data Reception
Use a transaction counter for the receive pipe.

When a short packet is received, the expected remaining receive data length is stored in tranlen of USBC_UTR_t
structure and transfer ends. When the received data exceeds the buffer size, data read from the FIFO buffer up to the
buffer size and transfer ends. When the user buffer area is insufficient to accommodate the transfer size, the
usb_cstd_DataEnd() function may clear the receive packet in some cases.

When using DTC, the buffer size must be an integral multiple of the maximum packet size.

5.8.7 Data Transfer Overview
The following shows an overview of data transfer using a transmission as an example.

1. With ANSI Interface

(1). After open processing is complete, control() is used to set the call-back function in the APL.

(2). write() is called and data transfer request executed.

(3). After data transfer is complete the call-back function “complete” that was set in (1) is called and the transfer results
are notified to HDCD. (See 5.8.2, Notice of a transmission result .)

2. non-ANSI Interface

(1). Transfer status is set by the APL or HDCD in the USB_UTR_t structure members listed below.

 keyword: Pipe number

 tranadr: Data buffer

 tranlen: Transfer length

 segment: USB_TRAN_END

 complete: The callback function performed at the time of the end of data transfer

(2). R_usb_hstd_TransferStart() is called and data transfer request executed.

(3). After data transfer is complete, the call-back function “complete” that was set in (1) is called and the transfer results
are notified to HDCD. (See 5.8.2, Notice of a transmission result.)

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 120 of 157
Apr 1, 2013

5.9 Pipe Information
5.9.1 Overview
HDCD needs to hold a pipe setup which suited the class driver concerned as a pipe information table.

The host sample program has indicated the sample table holding the pipe information on a device to
r_usb_vendor_hdefep.c.

5.9.2 Pipe Information Table
A pipe information table comprises the following six items (uint16_t × 6).

1. Pipe window select register (address 0x64)
2. Pipe configuration register (address 0x68)
3. Pipe buffer designation register (address 0x6A) - R8A66597 only.
4. Pipe maximum packet size register (address 0x6C)
5. Pipe period control register (address 0x6E)
6. FIFO port usage method

5.9.3 Definition of Pipes
The composition of the pipe information table currently used by the host sample program is shown below.

The macro definition of the value which can be set up by the pipe definition item of a pipe information table is defined
by r_usb_cdefusbip.h.

<Example >

uint16_t usb_gpvendor_smpl_eptbl1[] = ← Registered information table
{
 USB_PIPE1, ←Pipe definition item 1
 USB_NONE|USB_BFREOFF|USB_DBLBOFF|USB_CNTMDOFF|USB_SHTNAKOFF|USB_EP1, ←Pipe
 definition item 2
 USB_BUF_SIZE(1024) | USB_BUF_NUMB(8), ←Pipe definition item 3
 USB_NONE, ←Pipe definition item 4
 USB_NONE, ←Pipe definition item 5
 USB_CUSE, ←Pipe definition item 6
 ：
 ：
 USB_PDTBLEND,
}

1. Pipe definition item 1

Specify the value to be set in the pipe window select register.

Pipe select : Specify the selected pipe (USB_PIPE1 to USB_PIPE9)
Restrictions

-

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 121 of 157
Apr 1, 2013

2. Pipe definition item 2

Specify the values to be set in the pipe configuration register.

Transfer type : Specify either USB_BULK or USB_INT.
BRDY operation designation : Specify USB_BFREOFF.
Double buffer mode : Specify either USB_DBLBON or USB_DBLBOFF.
Continuous transmit/receive mode : Specify either USB_CNTMDON or USB_CNTMDOFF.
SHTNAK operation designation : Specify either USB_SHTNAKON or USB_SHTNAKOFF.
Transfer direction : Specify either USB_DIR_H_OUT or USB_DIR_H_IN.
Endpoint number : Specify the endpoint number (EP1 to EP15).

Restrictions

(1). The values that can be set for the transfer type differ according to the selected pipe. For details, refer to the
hardware manual of the corresponding device.

(2). For a pipe set to the receive direction, specify USB_SHTNAKON
(3). The continuous transfer mode setting is only valid for R8A66597.
(4). The same endpoint number may not be set for pipes with different direction settings

3. Pipe definition item 3

Only for R8A66597. Specify the settings for the pipe buffer designation register.

Buffer size : Specify the pipe buffer size in 64-byte units.
Buffer start number : Specify the buffer start number.

Restrictions

(1). Make settings such that buffer areas in use at the same time do not overlap
(2). When the USB_DBLBON setting is used, twice the area is needed

4. Pipe definition item 4

Specify the settings for the pipe maximum packet size register

Maximum packet size : Specify the maximum packet size for the pipe.
Restrictions

(1). The Max packet size which can be specified changes with devices. For details, please refer to the hardware
manual of each device

5. Pipe definition item 5

Specify the settings for the pipe period control register.

In-buffer flush : specify USBC_IFISOFF.
Interval duration : Specify the interval value (0 to 7).

Restrictions

(1). When a transmission type is set up in addition to USB_ISO, the ISO IN buffer flash should set up
USB_IFISOFF.

(2). When selecting pipes 3 to 5, specify value 0 for the interval duration.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 122 of 157
Apr 1, 2013

6. Pipe definition item 6

Specify the FIFO port to be used for the pipe.

USB_CUSE : CFIFO is used and CPU access is carried out.
USB_D0USE : D0FIFO is used and CPU access is carried out.
USB_D0DMA : D0FIFO is used and DTC / DMA access is carried out.
USB_D1USE : D1FIFO is used and CPU access is carried out.
USB_D1DMA : D1FIFO is used and DTC / DMA access is carried out.

Restrictions

(1). A transaction counter starts the pipe of the receiving direction.
(2). No sample functions are provided for USB_D0USE and USB_D1DMA

7. Other pipe setting notes

(1). Use device class to specify transfer unit communication synchronization.
(2). Do not fail to write USBC_PDTBLEND at the end of the table.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 123 of 157
Apr 1, 2013

5.10 Host Sample Program
USB-BASIC-FW host sample program is configured with a vendor class driver and sample application. It includes the
following features.

1. Data transfer with USB-BASIC-FW peripheral sample program (see 5.10 Host Sample Program)
2. ANSI-type API

Host–peripheral data communication sample program
The host sample program can communicate with a peripheral device also running the USB-BASIC-F/W sample code.
Bulk and interrupt data can be transferred.

5.10.1 Operation
The following describes an example of the host sample program for non-OS operations.

1. Initialization

When the device goes to the reset state, the PowerON_Reset_PC function in resetprg.c is called.

The PowerON_Reset_PC function initializes the MCU, sections, the scheduler, etc., and then calls the
usb_cstd_main_task function in main.c. After the USB module is set and tasks are registered in the usb_cstd_main_task
function, the device returns to the static state.

Figure 5-1 shows the general flow of the initialization routine from reset state to static state.

Reset

PowerON_Reset_PC

usb_cstd_main_task

PowerON_Reset_PC

MCU initial setting

Scheduler initialization

End

usb_cstd_main_task

usb_cstd_task_start

MCU initial setting

USB module interrupt initial
setting

DMA module interrupt initial
setting

Evaluation board
circumference function

settings

End

End

usb_cstd_task_start

HDCD registration

USB module start

USB module operational
mode setup

HCD is registered into a
scheduler

HDCD is registered into a
scheduler

APL is registered into a
scheduler

usb_apl_task_switch
（Stationary state）

End

Figure 5-1 Host Sample Program Intialization Overview

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 124 of 157
Apr 1, 2013

2. The ‘Static State’

After initialization, the sample program calls usb_apl_task_switch and the device returns to the “static state”
(initialization done, but not enumeration).

usb_apl_task_switch is a never ending loop which continuously does the following.

(1). Checks for processing requests with the scheduler.

(2). If processing requests are present, it selects the task with highest priority and sets the task processing request flag.

(3). If the task processing request flag is set, it runs each task to confirm and process any message.

Figure 5-2 shows the program flow of usb_apl_task_switch (the “static state”)

usb_apl_task_switch

R_usb_cstd_Scheduler

Yes

task processing
request flag set?

R_usb_hstd_HcdTask

R_usb_hvendor_task

usb_hvendor_apl_task

No

R_usb_hstd_MgrTask

R_usb_hhub_Task

Figure 5-2 Static State Program Flow

3. The sample application task - usb_hvendor_apl_task()

The sample application task performs open processing and data transmit/receive requests for the sample driver, as
described below.

(1). Using ANSI Interface

 “Open” processing. Check if USB communication with USB peripheral is enabled. If so, obtain a file number. The
“vendor class” application task uses the file number obtained to transmit/receive demo data (using read and write).

In the demo “vendor class application”, data is transferred in both directions between host and peripheral.

The peripheral will send a byte which is incremented from 0x00 to 0xFF using EP1(Bulk) IN and EP3(Interrupt) IN. This
endpoint (EP1 IN, EP3 IN) is continuously read by the host demo application.

EP2(Bulk) OUT and EP4(Interrupt) OUT are continuously fed by the host demo with the data that was received via
EP1and EP3.

This is all continued indefinitely.

(2). Using ANSI Interface

The demo is the same, except the open processing is not used, but instead the legacy PCD/HCD API.

4. The sample driver task - usb_hvendor_task()

The sample driver task notifies the HCD of the data transmit/receive request from the vendor sample application task and
performs the data transmit/receive operation.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 125 of 157
Apr 1, 2013

5.11 How to work USB-BASIC-FW as Host mode
This section describes how to operate the USB-BASIC-F/W as a host, using USB-BASIC-FW and sample code as an
example.

5.11.1 Device selection
Table 5.12 lists the main device hardware resources included in USB-BASIC-FW. Change the folder name of the device
to be operated from “HwResourceForUSB_device name” to “HwResourceForUSB.”

Table 5.12 The hardware resource of a sample code

Folder Device Evaluation Board
HwResourceForUSB_RX62N RX62N Renesas Starter Kit+ for RX62N
HwResourceForUSB_RX630 RX630 Renesas Starter Kit for RX630
HwResourceForUSB_RX63N RX63N Renesas Starter Kit+ for RX63N
HwResourceForUSB_RX63T RX63T Renesas Starter Kit+ for RX63T
HwResourceForUSB_RX62N_597assp R8A66597 Renesas Starter Kit+ for RX62N +

R0K866597D020BR

5.11.2 User Configuration File - r_usb_usrconfig.h
The USB-BASIC-F/W functions are set by rewriting the user definition configuration file (r_usb_usrconfig.h) in the
HwResourceForUSB folder. Please change the following items.

The following shows each definition item in the User Configuration file (r_usb_usrconfig.h).

1. ANSI / non-ANSI interface

The ANSI preprocessor directive may be set to one of the following two options.

#define USB_ANSIIO_PP USB_ANSIIO_USE_PP ：Use ANSI Interface
 : Recommended for new projects
#define USB_ANSIIO_PP USB_ANSIIO_NOT_USE_PP ：Non-ANSI interface (legacy)

2. USB mode per port (host / peripheral)

Please select one USB mode (Host or Peripheral) for each USB module (USB IP0 and USB IP1).

Note: RX63T, RX630 and R8A66597 can only be set as USB_FUNCSEL_USBIP0_PP.

#define USB_FUNCSEL_USBIP0_PP USB_HOST_PP ：Host mode for USB IP0
#define USB_FUNCSEL_USBIP0_PP USB_PERI_PP ：Peripheral mode for USB IP0
#define USB_FUNCSEL_USBIP0_PP USB_NOUSE_PP ：USBIP0 Not used
#define USB_FUNCSEL_USBIP1_PP USB_HOST_PP ：Host mode for USB IP1
#define USB_FUNCSEL_USBIP1_PP USB_PERI_PP ：Peripheral mode for USB IP1
#define USB_FUNCSEL_USBIP1_PP USB_NOUSE_PP ：USBIP1 not used

3. USB ports

The USB port may be specified as one of the following two options (This definition is used only by R8A66597)

#define USB_PORTSEL_PP USB_1PORT_PP ：Use one USB port
#define USB_PORTSEL_PP USB_2PORT_PP ：Use both (two) USB ports

4. CPU byte endian

The CPU byte endian may be specified as one of the following two options.

#define USB_CPUBYTE_PP USB_BYTE_LITTLE_PP ：Little Endian
#define USB_CPUBYTE_PP USB_BYTE_BIG_PP ：Big Endian

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 126 of 157
Apr 1, 2013

5. Low power mode

The low power mode may be specified as one of the following two options。

#define USB_CPU_LPW_PP USB_LPWR_USE_PP ：Low Power Mode
#define USB_CPU_LPW_PP USB_LPWR_NOT_USE_PP ：Not Low Power Mode

6. External bus operating voltage

The external bus operating voltage may be specified as one of the following two options.
(Used only by R8A66597)

#define USB_LDRVSEL USB_VIF1 ：1.8 V applied to external bus pins
#define USB_LDRVSEL USB_VIF3 ：3.3 V external bus pins

7. Resonator oscillation frequency

Oscillating frequency of connected resonator may be specified as one of the following three options.
(Used only by R8A66597)

#define USB_XINSEL USB_XTAL12 ：12 MHz resonator connected
#define USB_XINSEL USB_XTAL24 ：24 MHz resonator connected
#define USB_XINSEL USB_XTAL48 ：48 MHz resonator connected

8. Transfer speed

The target speed may be specified as either of the following two options.
(Used only by R8A66597)

#define USB_HSESEL USB_HS_ENABLE ：Use High-Speed
#define USB_HSESEL USB_HS_DISABLE ：Use Full-Speed

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 127 of 157
Apr 1, 2013

Valid configurations listed by device

The user configuration for each device is shown in Table 5.17 from Table 5.13.

Table 5.13 Valid RX62N user configuration options

Setting Item Definition Name Setting Value Remarks

1 ANSI Interface USB_ANSIIO_PP
USB_ANSIIO_USE_PP
USB_ANSIIO_NOT_USE_PP

USB0 mode USB_FUNCSEL_USBIP0_PP
USB_HOST_PP
USB_PERI_PP
USB_NOUSE_PP

(Note)

2

USB1 mode USB_FUNCSEL_USBIP1_PP
USB_HOST_PP
USB_PERI_PP
USB_NOUSE_PP

(Note)

4 CPU Byte Endian USB_CPUBYTE_PP
USB_BYTE_LITTLE_PP
USB_BYTE_BIG_PP

5 Low Power Mode USB_CPU_LPW_PP
USB_LPWR_USE_PP
USB_LPWR_NOT_USE_PP

Table 5.14 Valid RX630 user configuration options

Setting Item Definition Name Setting Value Remarks

1 ANSI Interface USB_ANSIIO_PP
USB_ANSIIO_USE_PP
USB_ANSIIO_NOT_USE_PP

4 CPU Byte Endian USB_CPUBYTE_PP
USB_BYTE_LITTLE_PP
USB_BYTE_BIG_PP

5 Low Power Mode USB_CPU_LPW_PP
USB_LPWR_USE_PP
USB_LPWR_NOT_USE_PP

Table 5.15 Valid RX63N user configuration options

Setting Item Definition Name Setting Value Remarks

1 ANSI Interface USB_ANSIIO_PP
USB_ANSIIO_USE_PP
USB_ANSIIO_NOT_USE_PP

USB0 mode USB_FUNCSEL_USBIP0_PP
USB_HOST_PP
USB_PERI_PP
USB_NOUSE_PP

(Note)

2

USB1 mode USB_FUNCSEL_USBIP1_PP
USB_PERI_PP
USB_NOUSE_PP

(Note)

4 CPU Byte Endian USB_CPUBYTE_PP
USB_BYTE_LITTLE_PP
USB_BYTE_BIG_PP

5 Low Power Mode USB_CPU_LPW_PP
USB_LPWR_USE_PP
USB_LPWR_NOT_USE_PP

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 128 of 157
Apr 1, 2013

Table 5.16 Valid RX63T user configuration options

Setting Item Definition Name Setting Value Remarks

1 ANSI Interface USB_ANSIIO_PP
USB_ANSIIO_USE_PP
USB_ANSIIO_NOT_USE_PP

2 USB0 mode USB_FUNCSEL_USBIP0_PP USB_HOST_PP (Note)

4 CPU Byte Endian USB_CPUBYTE_PP
USB_BYTE_LITTLE_PP
USB_BYTE_BIG_PP

5 Low Power Mode USB_CPU_LPW_PP
USB_LPWR_USE_PP
USB_LPWR_NOT_USE_PP

Table 5.17 Valid R8A66597 user configuration options

Setting Item Definition Name Setting Value Remarks

1 ANSI Interface USB_ANSIIO_PP
USB_ANSIIO_USE_PP
USB_ANSIIO_NOT_USE_PP

USB0 mode USB_FUNCSEL_USBIP0_PP
USB_HOST_PP
USB_PERI_PP
USB_NOUSE_PP

(Note)

2

USB1 mode USB_FUNCSEL_USBIP1_PP
USB_HOST_PP
USB_PERI_PP
USB_NOUSE_PP

(Note)

3 USB Port USB_PORTSEL_PP
USB_1PORT_PP
USB_2PORT_PP

4 CPU Byte Endian USB_CPUBYTE_PP
USB_BYTE_LITTLE_PP
USB_BYTE_BIG_PP

5 Low Power Mode USB_CPU_LPW_PP
USB_LPWR_USE_PP
USB_LPWR_NOT_USE_PP

6
External Bus Operating
Voltage

USB_LDRVSEL
USB_VIF1
USB_VIF3

7
Oscillating Frequency of
Connected

USB_XINSEL
USB_XTAL12
USB_XTAL24
USB_XTAL48

8 Transfer Speed USB_HSESEL
USB_HS_ENABLE
USB_HS_DISABLE

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 129 of 157
Apr 1, 2013

5.11.3 Workspace build configuration
File inclusion and exclusion, depending on whether host or peripheral functionality (or both) was selected in the user
configuration file r_usb_usrconfig.h, is changed simply be selecting the proper Build Configuration. Table 5.18 shows
the operation per respective Build Configuration .

Table 5.18 Build configuration

Build Configuration Content of configuration
HOST Operate 1 USB port as a host.
PERI_HOST Operate 2 USB ports as the peripheral and host, respectively.

The configurations that can be selected differ according to the device. Table 5.19 shows each device and valid
configuration.

Table 5.19 Configuration conversion table

Build Configuration Device
PERI HOST PERI_HOST

RX62N ○ ○ ○
RX630 ○ × ×
RX63N ○ ○ ○
RX63T ○ ○ ×
R8A66597 ○ ○ ×

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 130 of 157
Apr 1, 2013

5.11.4 Host mode example
The following uses RX62N as an example to show the setup routine that enables USB-BASIC-FW and the sample
program to operate as host.

1. Selecting HwResourceForUSB

Change the folder name from "HwResourceForUSB_RX62N" to "HwResourceForUSB".

2. Selecting USB mode (Host/Peripheral)

Set macros USB_FUNCSEL_USBIP0_PP and USB_FUNCSEL_USBIP1_PP in the user definition information file
(r_usb_usrconfig.h) as follows.

#define USB_FUNCSEL_USBIP0_PP USB_HOST_PP // Host Mode

//#define USB_FUNCSEL_USBIP0_PP USB_PERI_PP // Peripheral Mode

//#define USB_FUNCSEL_USBIP0_PP USB_NOUSE_PP

//#define USB_FUNCSEL_USBIP1_PP USB_HOST_PP // Host Mode

//#define USB_FUNCSEL_USBIP1_PP USB_PERI_PP // Peripheral Mode

#define USB_FUNCSEL_USBIP1_PP USB_NOUSE_PP

3. Workspace Setting

Double click “Fw.hws” to start up HEW. Then set the build configuration in the workspace to “HOST”.

4. Generating Executable file

From the tabs at the top of the workspace, select [Build Build all], and then execute the build.

5. Connect to evaluation board

From the tabs at the top of the workspace, select [Debug Connect], and then connect the evaluation board to the
emulator.

6. Download and execute the execute file

From the tabs at the top of the workspace, select [Debug Download (target execute file)], and then download the
execute file to the evaluation board.

7. From the tabs at the top of the workspace, select [Debug Reset then execute], and execute the
program.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 131 of 157
Apr 1, 2013

6. HUB Class

6.1 Basic Functions
HUBCD is a task that manages the states of the down ports of a connected USB hub and supplements the functions of
HCD and HDCD. HUBCD performs the following functions.

1. State management for devices connected to the USB hub down ports
2. Enumeration of devices connected to the USB hub down ports

6.2 HUBCD API Functions
Table 6.1 lists the API functions of HUBCD.

Table 6.1 List of HUBCD API Functions

Function Name Description
R_ usb_hstd_HubRegistAll() Register HUBCD
R_usb_hhub_Task HUB Task

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 132 of 157
Apr 1, 2013

R_ usb_hstd_HubRegistAll

Register HUBCD

Format

void R_ usb_hstd_HubRegistAll(USB_UTR_t *ptr, USB_HCDREG_t *callback)

Argument

*ptr Pointer to a USB Transfer Structure

*callback Pointer to Class driver structure

Return Value

－ －

Description

The information on HUBCD is registered into a class driver structure. After registration is complete, the
initialization call-back function is executed.

Note

1. Besides above arguments, also set the following members of the USB Transfer Structure.

 USB_REGADR_t ipp ：USB register base address

 uint16_t ip ：USB IP number

2. The user must call this function from the user application during initialization.

3. Refer to Table 5.9 USB_HCDREG_t for details about registration information.

Example

void usb_smp_registration(USB_UTR_t *ptr)
{
 USB_HCDREG_t driver;
 ：
 R_usb_hhub_Registration(ptr, &driver);
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 133 of 157
Apr 1, 2013

R_usb_hhub_Task

HUB Task

Format

void R_usb_hhub_Task(USB_VP_INT stacd)

Argument

stacd Task start code (Not used)

Return Value

－ －

Description

At the time of selection of a host, the state of the down port of the connected USB hub is managed, and the function
between HCD and HDCD is complemented.

Note

1. Call this in the loop that executes the scheduler processing for non-OS operations.

2. See ”Figure 4-2 Static State Program Flow” for a usage example

Example

void usb_smp_mainloop(void)
{
 while(1)
 {
 /* Scheduler starting */
 R_usb_cstd_Scheduler();
 /* Flag check */
 if(USB_FLGSET == R_usb_cstd_CheckSchedule())
 {
 ：
 R_usb_hhub_Task((USB_VP_INT)0);
 ：
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 134 of 157
Apr 1, 2013

6.3 Down Port State Management
When the HUBCD task starts, it performs the following for all down ports and confirms that each down port is in the
device connected state.

1. Enable port power (HubPortSetFeature:USB_HUB_PORT_POWER)

2. Initialize port (HubPortClrFeature:USB_HUB_C_PORT_CONNECTION)

3. Get port status (HubPortStatus:USB_HUB_PORT_CONNECTION)

6.4 Connecting Devices to Down Ports
When HUBCD receives a down port device attach notification from the USB hub, it issues a USB reset signal request to
the USB hub (HubPortSetFeature:USB_HUB_PORT_RESET). Then it uses the MGR task resource to enumerate the
connected devices. HUBCD stores the reset handshake result and assigns addresses successively, starting from
USBC_DEVICEADDR + 1.

6.5 Class Requests
The class request which HUBCD is supporting is shown in Table 6.2.

Table 6.2 USB Hub Class Requests

Request Installation
Status

Function Name Description

ClearHubFeature ×
ClearPortFeature

○

usb_hhub_PortClrFeature USB_HUB_PORT_ENABLE
USB_HUB_PORT_SUSPEND
USB_HUB_C_PORT_CONNECTION
USB_HUB_C_PORT_ENABLE
USB_HUB_C_PORT_SUSPEND
USB_HUB_C_PORT_OVER_CURRENT
USB_HUB_C_PORT_RESET

ClearTTBuffer ×
GetHubDescriptor ○ R_usb_hhub_GetHubInformation Get descriptor
GetHubStatus ×
GetPortStatus ○ R_usb_hhub_GetPortInformation Get port status
ResetTT ×
SetHubDescriptor ×
SetHubFeature ×
SetPortFeature

○

usb_hhub_PortSetFeature USB_HUB_PORT_POWER
USB_HUB_PORT_RESET
USB_HUB_PORT_SUSPEND
USB_HUB_C_PORT_ENABLE

GetTTState ×
StopTT ×

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 135 of 157
Apr 1, 2013

7. non-OS Scheduler

7.1 Overview
The non-OS scheduler executes task scheduling according to task priority. The following are non-OS task scheduler
features.

・ A scheduler function manages requests generated by the tasks and interrupt etc according to the relative
priority of the tasks.

・ When multiple requests are generated by tasks with the same priority, they are executed using a FIFO
configuration.

・ call-back functions are used for responses to tasks indicating the end of a request, so the customer need
only install appropriate class drivers for the system and there is no need to modify the scheduler itself.

7.2 non-OS Scheduler Macro
Table 7.1 shows the scheduler macro that user uses.

Table 7.1 Scheduler macro

Scheduler macro Registration function Description
R_USB_SND_MSG R_usb_cstd_SndMsg Specifies Task ID and transmits message
R_USB_ISND_MSG R_usb_cstd_iSndMsg Specifies Task ID from interrupt and transmits message.
R_USB_WAI_MSG R_usb_cstd_WaiMsg Runs USB_SND_MSG after running the scheduler the

specified number of times.
R_USB_RCV_MSG R_usb_cstd_RecMsg Checks if received message is in specified mailbox.
R_USB_TRCV_MSG R_usb_cstd_RecMsg Checks if received message is in specified mailbox.
R_USB_PGET_BLK R_usb_cstd_PgetBlk Secures an area for storing a message.
R_USB_REL_BLK R_usb_cstd_RelBlk Releases an area for storing a message.

7.2.1 non-OS Scheduler API Function
 Table 7.2 shows the list of API function for non-OS scheduler.

Table 7.2 List of non-OS scheduler API function

API function Description
R_usb_cstd_SndMsg() Sends processing requests to the priority table.
R_usb_cstd_iSndMsg() Sends processing requests from interrupts to the priority table.
R_usb_cstd_RecMsg() Checks if an execution request was issued.
R_usb_cstd_PgetBlk() Allocates an area for storing a request information table.
R_usb_cstd_RelBlk() Releases an area used for storing a request information table.
R_usb_cstd_Scheduler() Manages requests generated by the tasks.
R_usb_cstd_SetTaskPri() Set Task Priority.
R_usb_cstd_CheckSchedule() Checks whether or not processing is scheduled.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 136 of 157
Apr 1, 2013

R_usb_cstd_SndMsg

Sends processing requests to the priority table

Format

USB_ER_t R_usb_cstd_SndMsg(uint8_t id, USB_MSG_t *mess)

Argument

id Task ID to send message.

*mess Transmitted message

Return Value

USB_E_OK Message transmission completion

USB_E_ERROR Task ID is not set

 Priority of task is not set

 Priority table is full (Can’t send request to priority table)

Description

This function transfers the processing request to the priority table.

The function is defined in the R_USB_SND_MSG macro.

Note

1. Please call the sceduler macro that this function is defined in theuser application other than the interrupt
function or the class driver.

2. Specify the start address of the memory buffer in the message to be transmitted.

3. The sample program specifies the start address of the memory block obtained in the R_PGET_BLK macro.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 137 of 157
Apr 1, 2013

Example

void usb_smp_task()
{
 USB_MH_t p_blf;
 USB_ER_t err;
 USB_PCDINFO_t *pp;
 ：
 /*Allocating the messsage store area */
 err = R_USB_PGET_BLK(USB_PVENDOR_MPL, &p_blf);
 if(err == USB_OK)
 {
 /* Setting Message */
 pp = (USB_CLSINFO_t*)p_blf;
 pp->msghead = (USB_MH_t)NULL;
 pp->msginfo = USB_SMP_REQ;
 pp->keyword = keyword;
 pp->complete = complete;
 pp->ip = ptr->ip;
 pp->ipp = ptr->ipp;
 }
 /* Send the message */
 err = R_USB_SND_MSG(USB_SMP_MBX, (USB_MSG_t*)cp);
 if(err != USB_OK)
 {
 /* Error processing */
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 138 of 157
Apr 1, 2013

R_usb_cstd_iSndMsg

Sends processing requests from interrupts to the priority table.

Format

USB_ER_t R_usb_cstd_iSndMsg(uint8_t id, USB_MSG_t *mess)

Argument

id Task ID to send message

*mess Transmitted message

Return Value

USB_E_OK Message transmission completion

USB_E_ERROR Task ID is not set

 Priority of task is not set

 Priority table is full (Can’t send request to priority table

Description

This function transfers the processing request to the priority table.

The function is defined in the R_USB_ISND_MSG macro.

Note

1. Please call the sceduler macro that this function is defined in the interrupt function.

2. Specify the start address of the memory buffer in the message to be transmitted.

3. The sample program specifies the start address of the memory block obtained in the R_PGET_BLK macro.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 139 of 157
Apr 1, 2013

Example

void usb_smp_interrupt()
{
 USB_MH_t p_blf;
 USB_ER_t err;
 USB_PCDINFO_t *pp;
 ：
 /*Allocating the messsage store area */
 err = R_USB_PGET_BLK(USB_PVENDOR_MPL, &p_blf);
 if(err == USB_OK)
 {
 /* Setting Message */
 pp = (USB_CLSINFO_t*)p_blf;
 pp->msghead = (USB_MH_t)NULL;
 pp->msginfo = USB_SMP_REQ;
 pp->keyword = keyword;
 pp->complete = complete;
 pp->ip = ptr->ip;
 pp->ipp = ptr->ipp;
 }
 /* Send the message */
 err = R_USB_ISND_MSG(USB_SMP_MBX, (USB_MSG_t*)pp);
 if(err != USB_OK)
 {
 /* Error processing */
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 140 of 157
Apr 1, 2013

R_usb_cstd_RecMsg

Checks if an execution request was issued.

Format

USB_ER_t R_usb_cstd_RecMsg(uint8_t id, USB_MSG_t** mess, USB_TM_t tm)

Argument

id Task ID of received message

*mess Received message

tm Not Used

Return Value

USB_E_OK There is request processing

USB_E_ERROR Task ID is not set

Description

This function checks if the processing request corresponding to the ID specified in the 1st argument is in the priority
table.

The function is defined in the R_USB_RCV_MSG/ R_USB_TRCV_MSG macro.

Note

Please call the sceduler macro that this function is defined from the user application or the class driver

Example

void usb_smp_task()
{
 USB_UTR_t *mess;
 USB_ER_t err;
 ：
 /* Checking the message */
 err = R_USB_RCV_MSG(USB_SMP_MBX, (USB_MSG_t**)&mess);
 if(err == USB_OK)
 {
 /* Processing corresponding to the received message */
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 141 of 157
Apr 1, 2013

R_usb_cstd_PgetBlk

Allocates an area for storing a request information table.

Format

USB_ER_t R_usb_cstd_PgetBlk(uint8_t id, USB_UTR_t **blk)

Argument

id Task ID of allocating area

**blk Pointer to allocating area

Return Value

USB_E_OK The area is allocated

USB_E_ERROR Task ID is not set

 The area is not secured

Description

This function secures an area for storing a message. The function allocates 40 bytes per block.

The function is defined in the R_USB_PGET_BLK macro.

Note

Please call the sceduler macro that this function is defined from the user application or the class drive.

Example

void usb_smp_task()
{
 USB_ER_t err;
 USB_PCDINFO_t *pp;
 ：
 /* Allocating the are that the message is stored.*/
 err = R_USB_PGET_BLK(USB_SMP_MPL, &p_blf);
 if(err == USB_OK)
 {
 /* Setting Message */
 pp = (USB_CLSINFO_t*)p_blf;
 pp->msghead = (USB_MH_t)NULL;
 pp->msginfo = USB_SMP_REQ;
 pp->keyword = keyword;
 pp->complete = complete;
 pp->ip = ptr->ip;
 pp->ipp = ptr->ipp;
 /* Send the message */
 err = R_USB_SND_MSG(USB_SMP_MBX, (USB_MSG_t*)cp);
 :
 }
 else
 {
 /* Error Processing */
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 142 of 157
Apr 1, 2013

R_usb_cstd_RelBlk

Releases an area used for storing a request information table

Formant

USB_ER_t R_usb_cstd_RelBlk(uint8_t id, USB_UTR_t* blk)

Argument

id Task ID of releasing area .

*blk Pointer to released area

Return Value

USB_E_OK The area is released

USB_E_ERROR Task is not set

 The area is not released

Description

This function releases an area for storing a message.

The function is defined in the R_USB_REL_BLK macro.

Note

Please call the sceduler macro that this function is defined from the user application or the class drive.

Example

void usb_smp_task()
{
 USB_ER_t err;
 USB_UTR_t *mess;
 ：
 /* Releasing the area that the message is stored */
 err = R_USB_REL_BLK(USB_SMP_MPL,(USB_MH_t)mess);
 if(err != USB_OK)
 {
 /* Error processing */
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 143 of 157
Apr 1, 2013

R_usb_cstd_Scheduler

Manages requests generated by the tasks

Format

void R_usb_cstd_Scheduler(void)

Argument

－ －

Return Value

－ －

Description

Managing requests generated by the tasks and hardware according to the relative priority of the tasks

Note

Call this function in the loop that executes the scheduler processing for non-OS operations.

See Figure 4-2 Static State Program Flow or Figure 5-2 Static State Program Flow for a usage example

Example

void usb_smp_mainloop(void)
{
 while(1)
 {
 /* Working Scheduler */
 R_usb_cstd_Scheduler();
 /* Check flag */
 if(USB_FLGSET == R_usb_cstd_CheckSchedule())
 {
 ：
 /* Task Processing */
 R_usb_pstd_PcdTask((USB_VP_INT)0);
 ：
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 144 of 157
Apr 1, 2013

R_usb_cstd_SetTaskPri

Set Task Priority

Format

void R_usb_cstd_SetTaskPri(uint8_t tasknum, uint8_t pri)

Argument

tasknum Task ID

pri Task Priority

Return Value

－ －

Description

Set the priority to the task. This function sets the priority of the task. Priority (pri) specified in 2nd argument is set to
the task specified in the 1st argument (tasknum).

Note

1. Please call the sceduler macro that this function is defined from the user application or the class drive.

2. Please refer to ‘9.1 How to register in non-OS ’ about Task priority.setting

Example

void usb_smp_driver_start(void)
{
 /* The priority of the sample task is set to 4 */
 R_usb_cstd_SetTaskPri(USB_SMP_TSK, USB_PRI_4);
 :
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 145 of 157
Apr 1, 2013

R_usb_cstd_CheckSchedule

Checks whether or not processing is scheduled.

Format

uint8_t R_usb_cstd_CheckSchedule(void)

Argument

－ －

Return Value

USB_FLGSET Processing request

USB_FLGCLR No processing request

Description

Checks whether or not processing is scheduled.

Note

Call this in the loop that executes the scheduler processing for non-OS operations.

See Figure 4-2 Static State Program Flow or Figure 5-2 Static State Program Flow for a usage example

Example

void usb_smp_mainloop(void)
{
 while(1)
 {
 /* Working Scheduler */
 R_usb_cstd_Scheduler();
 /* Flag Check */
 if(USB_FLGSET == R_usb_cstd_CheckSchedule())
 {
 ：
 /* Task Processing */
 ：
 }
 ：
}

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 146 of 157
Apr 1, 2013

8. uITRON system

8.1 Overvies
RTOS operations use the RX Family real time OS RI600/4, manufactured by Renesas Electronics. For details concerning
RI600/4, refer to the RI600/4 User’s Manual (RX Family Real Time OS).

8.2 GUI configurator
RTOS uses the GUI configurator packaged with RI600/4 to set the system definitions, time management, system
resources, and interrupt handlers.The GUI configurator uses this information to create settings in the configuration file.

The RTOS configuration file is stored in the RTOSCFG folder in the hardware resource folder (HwResourceForUSB).

8.3 uITRON system resource
Table 8-1 to Table 8-3 show the uITRON system resources used in the RX62N host sample program.

When installing a user-created class driver in USB-BASIC-FW, use the GUI configurator packaged with the RI600/4 to
add the information in these tables.

Table 8-1 Task Information

Task Name Task Address Priority Stacksize Initial Start Description
USB_SMP_TSK usb_cstd_main_task 8 512 ON Main Task
USB_HCD_TSK usb_hstd_HcdTask 3 512 OFF HCD Task
USB_MGR_TSK usb_hstd_MgrTask 5 512 OFF MGR Task
USB_HUB_TSK usb_hhub_Task 4 512 OFF HUBCD Task
USB_HSMP_TSK usb_hvendor_apl_task 8 512 OFF Application Task
USB_HVENDOR_TSK R_usb_hvendor_task 7 512 OFF Vendor Class Driver Task

Table 8-2 Mailbox Information

Mailbox Name Task Queue Message Queue Max Priority Description
USB_HCD_MBX FIFO order FIFO order 1 For HCD
USB_MGR_MBX FIFO order FIFO order 1 For MGR
USB_HUB_MBX FIFO order FIFO order 1 For HUBCD
USB_CLS_MBX FIFO order FIFO order 1 For HDCD
USB_ANSI_MBX FIFO order FIFO order 1 For ANSI
USB_HSMP_MBX FIFO order FIFO order 1 For Sample Application
USB_HVENDOR_MBX FIFO order FIFO order 1 For Vendor Class driver

Table 8-3 Fixed-Memory pool information

Memory Block Memory pool name Task Queue
Number of block Size

Description

USB_HCD_MPL FIFO order 10 64 For HCD
USB_MGR_MPL FIFO order 10 64 For MGR
USB_HUB_MPL FIFO order 10 64 For HUBCD
USB_CLS_MPL FIFO order 10 64 For HDCD
USB_HSMP_MPL FIFO order 10 64 For Sample Application
USB_HVENDOR_MPL FIFO order 10 64 For Vendor Class driver

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 147 of 157
Apr 1, 2013

8.4 uITRON Task start
RTOS calls the vsta_knl() in the initialization routine (PowerON_Reset_PC()) function and runs the kernel.

After the kernel is run, the usb_cstd_main_task() function is started, all other tasks are started, and then the main task
goes to the DOMANT state.

8.5 uITRON Systemcall
Table 8-4 shows the system calls used in RTOS.

Table 8-4 System call

Systemcall Description
USB_ACT_TSK Starts a task
USB_TER_TSK Terminates a task.
USB_DLY_TSK Delays a task by the specified duration.
USB_SND_MSG Transmits a message from a task to the specified mailbox.
USB_ISND_MSG Transmits a message from a interrupt to the specified mailbox.
USB_RCV_MSG Receives a message from the mailbox.
USB_TRCV_MSG Receives a message from the mailbox with timeout.
USB_PGET_BLK Get a variable-length memory block with a task (interrupt).
USB_REL_BLK Release a variable-length memory block.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 148 of 157
Apr 1, 2013

9. How to register in non-OS/RTOS

9.1 How to register in non-OS
The following settings are required to register class drivers and applications in non-OS.

For details on schedulers used by non-OS, refer to chapter 6. Non-OS Scheduler.

1. Scheduler settings
2. Task information settings
3. Task registrations in scheduler
4. Task calls

(1). Setup of scheduler

Set the following items in USB-BASIC-FW r_usb_cKernelid.h file.

#define USB_IDMAX Maximum number*1 of task IDs
#define USB_TABLEMAX Maximum number of messages storable in the priority table for each task priority
#define USB_BLKMAX Maximum number of information tables used to send messages from each task
*1: For the maximum number setting, add 1 to the highest ID number among the tasks to be used.

(2). Setup of task information

For each additional task, add the task ID, mailbox ID, memory pool ID and task priority to the USB-BASIC-F/W
r_usb_ckernelid.h file.

Keep the following points in mind when setting these items.

・ Assign consecutive ID numbers to the tasks, and do not assign the same ID to more than one task.

・ Set the same value assigned to task ID for mailbox ID and memory pool ID.

・ Set the task priority of added class drivers and applications to a value lower than that of PCD.

The following settings are examples for vendor class drivers of the sample program.

#define USB_PVENDOR_TSK USB_TID_6 ：Task ID
#define USB_PVENDOR_MBX USB_PVENDOR_TSK ：Mailbox ID
#define USB_PVENDOR_MPL USB_PVENDOR_TSK ：Memory pool ID

(3). Task registration to a scheduler

R_usb_cstd_SetTaskPri() is used to set task ID priorities in the scheduler.

Set the task ID in the 1st argument of R_usb_cstd_SetTaskPri() and the task priority in the 2nd argument.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 149 of 157
Apr 1, 2013

(4). Calling the application task

The following shows the point of calling the application task.

a). If the application task uses non-OS scheduler API

Please call the application task at the "Inside of the scheduler management" or "outside of the sckeduler
management".

Example)

 while(1)
 {
 /* Scheduler processing */
 R_usb_cstd_Scheduler();
 if(USB_FLGSET == R_usb_cstd_CheckSchedule())
 {
 /* Inside of the scheduler management */
 R_usb_pstd_PcdTask((USB_VP_INT)0); /* PCD Task */
 R_usb_pvendor_task((USB_VP_INT)0); /* PDCD Task */
 usb_pvendor_apl_task((USB_VP_INT)0); /* APL Task */
 }
 /* Outside of the scheduler management */
 }

b). If the application task does not use non-OS scheduler API

Please call the application task at the "outside of the sckeduler management".

Example)

 while(1)
 {
 /* Scheduler processing */
 R_usb_cstd_Scheduler();
 if(USB_FLGSET == R_usb_cstd_CheckSchedule())
 {
 R_usb_pstd_PcdTask((USB_VP_INT)0); /* PCD Task */
 R_usb_pvendor_task((USB_VP_INT)0); /* PDCD Task */
 }
 /* Outside of the scheduler management */
 usb_pvendor_apl_task((USB_VP_INT)0); /* APL Task */
 }

9.2 How to register in RTOS
To register class drivers or applications in RTOS, the uITRON resources, such as task, mailbox, and memory pool, must
be added to the configuration file.

For details about uITRON, refer to chapter “8 uITRON system”.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 150 of 157
Apr 1, 2013

10. Debug Information Output
When the user describes the debug information output macro from the user application, the user can output the debug
information on the console window (HEW).

10.1 When the debug information is output on the console window (HEW)
The following shows the debug information output procedure.

1. Please use the following debug macro in the user application to output user debugprint.

void func(void)
{

uint16_t ver;

ver = 2;

 USB_PRINTF1(“RENESAS USB USB-BASIC-F/W V.%d.00”, ver);
}

2. Please enable the following definition that is described in r_usb_cmacprint.h file.

Enable "USB_DEBUGPRINT_PP" definition. (Refer to the following.)

//#define USB_DEBUGUART_PP /* enable sirial out */
#define USB_DEBUGPRINT_PP /* enable display out */

3. Please run the program after compiling.

10.2 When the debug information is outputted to UART
The function to output the debug information to UART does not support in this version.

10.3 Debug Information macros
The following shows the debug information macro to output the debug information to the console window on HEW.

USB_PRINTF0 : The number of argument is 0
USB_PRINTF1 : The number of argument is 1
USB_PRINTF2 : The number of argument is 2
USB_PRINTF3 : The number of argument is 3
USB_PRINTF4 : The number of argument is 4
USB_PRINTF5 : The number of argument is 5
USB_PRINTF6 : The number of argument is 6
USB_PRINTF7 : The number of argument is 7

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 151 of 157
Apr 1, 2013

11. DTC/EXDMA Transfer

11.1 Overview
In RX62N, RX63N, RX63T and RX630, when D0FIFO access (USBC_D0DMA) is specified in the pipe information
table, USB-BASIC-FW uses the DTC for FIFO access. In RX6N + R8A6667, FIFO access between SDRAM on
RX62N-RSK and R8A66597 is used EXDMA. Note that the DTC/EXDMA is a system-dependent function, so the
settings for transfer method, access timing, communication start/end timing, DTC/EXDMA, etc., should be changed as
necessary to match the system under development.

Please refer to EXDMA transfer block diagram (Figure 11-1) when using R8A66597/R8A66593.

11.1.1 Basic Specification
The specifications of the DTC transfer sample program code included in USB-BASIC-FW are listed below. DTC settings
are made by the usb_cpu_d0fifo2buf_start_dma (),usb_cpu_buf2d0fifo_start_dma () function in the rx_rsk.c file. When
DTC is specified in the pipe information table, the usb_cstd_SendStart() or usb_cstd_ReceiveStart() function makes DTC
transfer settings.

Modify the DTC/EXDMA control sample functions usb_cpu_d0fifo2buf_start_dma () and
usb_cpu_buf2d0fifo_start_dma () and the DTC/EXDMA settings as necessary to match the system under development.

And, pipe 1 to pipe5 can used DTC/EXDMA access.

Table 11-1 shows DTC Setting Specifications.

Table 11-1 DTC Setting Specifications

Setting Description
FIFO port used D0FIFO port
Transfer mode Block transfer mode

One DTC transfer size: max packet size.
Chain transfer Disabled
Address mode Full address mode
Read skip Disabled
Access bit width (MBW) 2-byte transfer: 16-bit width

1-byte transfer: 8-bit width
(In data reception (D0FIFO to RAM), this setting is 16-bit width.)

Transfer end Receive direction: BRDY interrupt
Transmit direction: BEMP interrupt

Table11-2 EXDMA Setting Specifications

Setting Description
FIFO port used D0FIFO port
Transfer mode Block transfer mode

One EXDMAC transfer size :
Max Packe Size of the transfer PIPE

Address mode Single Address mode
(This is that R8A66597/R8A66593 is accessed by the EDACKn
signal and transfer the data by specifing the address to SDRAM.)

R8A66597/R8A66593
Control signal

Port 5 bit 5(P55)：EDREQ0-C pin
Port 5 bit 4(P54)：EDACK0-C pin

Access bit width (MBW) 2-byte transfer: 16-bit width

Transfer end Receive direction: BRDY interrupt
Transmit direction: BEMP interrupt

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 152 of 157
Apr 1, 2013

Table11-3 R8A66597/R8A66593 DMA Setting Specification

Setting Description
DMA transfer signal selection (DFORM) Uses DACKx_N signal only (CPU bus)

Figure 11-1 EXDMA Transfe Block Diagram

11.1.2 Notification of Transfer Result
When DTC access is used as well, USB-BASIC-FW uses the registered call-back function(this function is specified by
R_usb_hstd_TransferStart/R_usb_pstd_TransferStart) to notify PDCD/HDCD of the data transfer end condition.

USB-BASIC-FW can send the following seven communication result notifications to PDCD/HDCD.

Transfer Result is set to the member “status ” of USB_UTR_t structure.

The following shows Transfer Result

USB_DATA_NONE : Data transmit normal end
USB_DATA_OK : Data receive normal end
USB_DATA_SHT : Data receive normal end with less than specified data length
USB_DATA_OVR : Receive data size exceeded
USB_DATA_ERR : 1. No-response condition or over/underrun error detected

2. Specify other than 0x08000000 – 0x0A000000 to the transfer address when
using EXDMA.

USB_DATA_STALL : STALL response or MaxPacketSize error detected
USB_DATA_STOP : Data transfer forced end

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 153 of 157
Apr 1, 2013

11.1.3 Notes on Data Reception
When the received data exceeds the buffer size, data is read from the FIFO buffer up to the buffer size and transfer ends.

In Host mode, when the pipe information table is updated in the HCD API function, the following settings are
implemented.
Please carry out the following setup to a pipe information table at the time of Peripheral operation.

• Enable the SHTNAK function for the data receive pipe.
• The data receive pipe processes requests with the BFRE function enabled. (When the Ep table is set to

USB_D0DMA = DTC transfer, the pipe configuration is set to BFRE ON.)
• Use the transaction counter for the data receive pipe.

The area of integral multiples of the max packet size is necessary for the buffer where the received data is stored. When
the max packet size is 64 bytes, the necessary size of buffer example is shown to the receive data size below.

Table 11-4 Buffer size example (max packet size is 64bytes)

Receive data size Buffer size [bytes]
64 bytes or less 64 (max packet size)
65 bytes or more and 128 bytes or less 128 (max packet size times two)
… …
449 bytes or more and 512 bytes or less 512 (max packet size times eight)
… …

[Note]

When EXDMA is used, RX MCU internal RAM can not be used. EXDMA can use the external bus only.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 154 of 157
Apr 1, 2013

11.2 How to DTC/EXDMA transfer in the sample program
The Ep table must be edited in order to execute a DTC transfer in the sample application.

11.2.1 Pipe information table setting for DTC/EXDMA transfer in the Host sample program
Edit Ep table “usb_shvendor_smpl_tmp_eptbl” which is in the “r_usb_hvendor_defep.c”.

uint16_t usb_shvendor_smpl_tmp_eptbl[] =

{

 /* PIPE1 */

 USB_NONE,

 /* TYPE/BFRE/DBLB/CNTMD/SHTNAK/DIR/EPNUM */

 USB_NONE | USB_BFREOFF | USB_DBLBON | USB_CNTMDON | USB_SHTNAKON | USB_NONE | USB_NONE,

 USB_NONE,

 USB_NONE,

 USB_NONE,

 USB_CUSE,

 /* PIPE2 */

 USB_NONE,

 /* TYPE/BFRE/DBLB/CNTMD/SHTNAK/DIR/EPNUM */

 USB_NONE | USB_BFREOFF | USB_DBLBON | USB_CNTMDON | USB_SHTNAKON | USB_NONE | USB_NONE,

 USB_NONE,

 USB_NONE,

 USB_NONE,

 USB_CUSE,

[Note]

1. Either pipe 1 or pipe 2 can be used to run DTC/EXDMA. However, both pipes cannot be used to run
DTC/EXDMA.

When DTC/EXDMA is used in pipe 1 (BULK IN: receive),
USB_CUSE is changed to USB_D0DMA.

When DTC/EXDMA is used in pipe 2 (BULK OUT: transfer),
USB_CUSE is changed to USB_D0DMA.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 155 of 157
Apr 1, 2013

11.2.2 Pipe information table setting for DTC/EXDMA transfer in the Peripheral sample
program

Edit Ep table “usb_gpvendor_smpl_eptbl1” which is in the “r_usb_vendor_descriptor.c”.

#else /* USB_TARGET_CHIP_PP == USB_ASSP_PP */

uint16_t usb_gpvendor_smpl_eptbl1[] =

{

 /* PIPE1 Definition */

 USB_PIPE1,

 USB_BULK | USB_BFREOFF | USB_DBLBON | USB_SHTNAKON | USB_DIR_P_IN | USB_EP1,

 USB_NONE,

 64,

 USB_IFISOFF | USB_IITV_TIME(0u),

 USB_CUSE,

 /* PIPE2 Definition */

 USB_PIPE2,

 USB_BULK | USB_BFREOFF | USB_DBLBON | USB_SHTNAKON | USB_DIR_P_OUT | USB_EP2,

 USB_NONE,

 64,

 USB_IFISOFF | USB_IITV_TIME(0u),

 USB_CUSE,

[Note]

1. Either pipe 1 or pipe 2 can be used to run DTC/EXDMA. However, both pipes cannot be used to run
DTC/EXDMA.

When DTC/EXDMA is used in pipe 1 (BULK IN: receive),
USB_CUSE is changed to USB_D0DMA.

When DTC/EXDMA is used in pipe 2 (BULK OUT: transfer),
USB_CUSE is changed to USB_D0DMA.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 156 of 157
Apr 1, 2013

12. Limitations
USB-BASIC-FW is subject to the following restrictions.

1. The pipe usage methods are limited by the pipe information setting functions.
The receive pipe uses the transaction counter with the SHTNAK function.

2. The structures contain members of different types.
(Depending on the compiler, the address alignment of the structure members may be shifted.)

3. PDCD/HDCD must be prepared by the customer.
4. In a data transfer using the IFIS function (Isochronous IN Buffer Flush function), no BEMP interrupt is generated

when a buffer flush takes place after transfer of the final packet, so it is not possible to notify the higher level driver
of the transfer end condition.

5. In host mode and using non-OS, USB-BASIC-FW does not support suspend/resume of the connected hub and
devices connected to the hub’s down ports.

6. USB-BASIC-FW does not support suspend during data transfer. Execute suspend after confirming the data transfer
was completed.

Renesas USB MCU and USB ASSP USB Basic Host and Peripheral firmware

R01AN0512EJ0210 Rev.2.10 Page 157 of 157
Apr 1, 2013

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

A-1

Revision Record
Description

Rev.

Date Page Summary

1.00 Jan 31, 2011 — First edition issued
1.08 May 31, 2011 — Target device is added : RX630, R8A66597
 — Chapter composition is changed:

 - “6.Sample Program” is divided into “6.Workspace”,
 “7.Sample Applications”, “13.Non-OS Scheduler” and
 “14.uITRON System”

 - “14.General-purpose library” is deleted
 - “18.EXDMA Transfer” is added

 — 17.DTC Transfer:
It corresponded to transfer the transfer size other than integral
multiples of the max packet size.

 — Error in writing is cleared
2.00 Jun. 01.2012 — Revision of the document by firmware upgrade
2.01 Jan. 31.2013 — The description mistake and the reference error is fixed.
2.10 Apr. 01.2013 — Revision of the document by firmware upgrade.

- Add Target Device RX63T. Add the information on RX63T
- EXDMA is added in DTC section.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General
Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the
description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
⎯ The input pins of CMOS products are generally in the high-impedance state. In operation with an unused

pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated
shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as
an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins
in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
⎯ The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are

undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are
not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are
not guaranteed from the moment when power is supplied until the power reaches the level at which
resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
⎯ The reserved addresses are provided for the possible future expansion of functions. Do not access these

addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
⎯ When the clock signal is generated with an external resonator (or from an external oscillator) during a reset,

ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when
switching to a clock signal produced with an external resonator (or by an external oscillator) while program
execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different type number, confirm that the
change will not lead to problems.
⎯ The characteristics of MPU/MCU in the same group but having different type numbers may differ because

of the differences in internal memory capacity and layout pattern. When changing to products of different
type numbers, implement a system-evaluation test for each of the products.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and

 equipment; and industrial robots etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

 Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial

 implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no

 use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement

 possibility of physical injury, and injury or damage caused by fire in

 redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to

 products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas

 regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

liability for malfunctions or damages arising out of the

safety measures to guard them against the

life support devices or systems, surgical

http://www.renesas.com

11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

13F, No. 363, Fu Shing North Road, Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Arcadiastrasse 10, 40472 D
Tel: +49-211-65030, Fax: +49-211-6503-1327

üsseldorf, Germany

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220

2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Canada Limited

Renesas Electronics Europe Limited

Renesas Electronics America Inc.

Renesas Electronics (China) Co., Ltd.

Renesas Electronics (Shanghai) Co., Ltd.

Renesas Electronics Europe GmbH

Renesas Electronics Taiwan Co., Ltd.

Renesas Electronics Singapore Pte. Ltd.

Renesas Electronics Hong Kong Limited

Renesas Electronics Korea Co., Ltd.

Renesas Electronics Malaysia Sdn.Bhd.

SALES OFFICES

© 2013 Renesas Electronics Corporation. All rights reserved.
Colophon 2.2

measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

Electronics products or technology described in this document, you should comply with the applicable export control laws and

	1. Document Overview
	1.1 Overview
	1.2 Related Documents
	1.3 List of Terms
	1.4 How to Read This Document

	2. Overview
	2.1 Development Goals
	2.2 Features of USB-BASIC-FW
	2.2.1 Overall
	2.2.2 Host mode
	2.2.3 Peripheral mode
	2.2.4 Function provided by user

	2.3 Function
	2.4 Structure of Files and folders
	2.4.1 Folder Structure
	2.4.2 List of files

	2.5 Software Configuration
	2.6 Non-OS Scheduler Function and Tasks
	2.7 Host and Peripheral Sample Vendor Demo
	2.8 Note

	3. How to Register Class Driver
	3.1 How to register Peripheral Class Driver
	3.2 How to register Host Class Driver

	4. Peripheral
	4.1 Peripheral Control Driver (PCD)
	4.1.1 Basic functions
	4.1.2 Issuing requests to PCD
	4.1.3 USB requests

	4.2 API (Application Programming Interface)
	4.2.1 ANSI API
	4.2.2 General operation using ANSI API
	4.2.3 PCD API
	4.2.4 PCD Call-back functions

	4.3 Structure Definitions
	4.3.1 USB_PCDREG_t structure
	4.3.2 The USB_REQUEST structure

	4.4 Peripheral Control Transfer
	4.4.1 Class request processing
	4.4.2 Note

	4.5 Data Transfer
	4.5.1 Transfer requests
	4.5.2 Notification of transfer result
	4.5.3 The USB Communication Structure (USB_UTR_t）
	4.5.4 Notes on data transfer
	4.5.5 Notes on data reception
	4.5.6 Data transfer overview

	4.6 Pipe Definition
	4.6.1 Overview
	4.6.2 Pipe information table
	4.6.3 Definition of pipes 1 to 9

	4.7 Descriptor
	4.8 Peripheral sample program
	4.8.1 Function
	4.8.2 Operation of a peripheral sample program

	4.9 How to run USB-BASIC-FW in peripheral mode
	4.9.1 Device selection
	4.9.2 User Configuration File - r_usb_usrconfig.h
	4.9.3 Valid configurations listed by device
	4.9.4 Workspace build configuration
	4.9.5 Peripheral mode example

	5. Host
	5.1 Host Control Driver (HCD)
	5.1.1 Issuing Requests to HCD

	5.2 Host Manager (MGR)
	5.2.1 USB Standard Requests
	5.2.2 Checking of HDCD

	5.3 API (Application Programming Interface)
	5.3.1 ANSI API
	5.3.2 General operation using ANSI API
	5.3.3 HCD API

	5.4 Host call-back functions
	5.4.1 HCD call-backs
	5.4.2 MGR call-backs

	5.5 Structure Definitions
	5.5.1 USB_HCDINFO_t structure
	5.5.2 USB_HCDREG_t structure

	5.6 Target Peripheral List
	5.7 Host Control Transfer
	5.8 Data Transfer and Control Data Transfer
	5.8.1 Data transfer request
	5.8.2 Notice of a transmission result
	5.8.3 Data transfer retry
	5.8.4 The USB Communication Structure (USB_UTR_t)
	5.8.5 Notes on Data Transfer
	5.8.6 Notes on Data Reception
	5.8.7 Data Transfer Overview

	5.9 Pipe Information
	5.9.1 Overview
	5.9.2 Pipe Information Table
	5.9.3 Definition of Pipes

	5.10 Host Sample Program
	5.10.1 Operation

	5.11 How to work USB-BASIC-FW as Host mode
	5.11.1 Device selection
	5.11.2 User Configuration File - r_usb_usrconfig.h
	5.11.3 Workspace build configuration
	5.11.4 Host mode example

	6. HUB Class
	6.1 Basic Functions
	6.2 HUBCD API Functions
	6.3 Down Port State Management
	6.4 Connecting Devices to Down Ports
	6.5 Class Requests

	7. non-OS Scheduler
	7.1 Overview
	7.2 non-OS Scheduler Macro
	7.2.1 non-OS Scheduler API Function

	8. uITRON system
	8.1 Overvies
	8.2 GUI configurator
	8.3 uITRON system resource
	8.4 uITRON Task start
	8.5 uITRON Systemcall

	9. How to register in non-OS/RTOS
	9.1 How to register in non-OS
	9.2 How to register in RTOS

	10. Debug Information Output
	10.1 When the debug information is output on the console window (HEW)
	10.2 When the debug information is outputted to UART
	10.3 Debug Information macros

	11. DTC/EXDMA Transfer
	11.1 Overview
	11.1.1 Basic Specification
	11.1.2 Notification of Transfer Result
	11.1.3 Notes on Data Reception

	11.2 How to DTC/EXDMA transfer in the sample program
	11.2.1 Pipe information table setting for DTC/EXDMA transfer in the Host sample program
	11.2.2 Pipe information table setting for DTC/EXDMA transfer in the Peripheral sample program

	12. Limitations

